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A LAPLACE PREDICTIVE POSTERIOR APPROXIMATIONS

In this section, we review several methods for obtaining the predictive posterior of Laplace approxi-
mation.

A.1 MONTE CARLO SAMPLING

As descibed in main text, we can obtain a closed-form Gaussian posterior on output logits,

fθ(x∗) ∼ N (fθMAP(x∗),Λ) , (15)

where

Λ = (∇θfθ(x∗)|TθMAP
)Σ(∇θfθ(x∗)|θMAP). (16)

To obtain samples of fθ(x∗), we can decompose the covariance using the Cholesky factorization
Λ = LLT with

f̃θ(x∗) = fθMAP(x∗) + Lξ, (17)

where ξ is a vector of IID standard normal random variables. We can compute the Bayesian model
average by computing the average probabilities (passing the sampled logits through softmax function)
under the Gaussian random noise from ξ.

A.2 PROBIT APPROXIMATION

A closed-form approximation of the predictive posterior for classification can be obtained by integrat-
ing out the posterior over weights with a generalized probit approximation (Lu et al., 2020; Daxberger
et al., 2021a) of the likelihood,

p(y∗|x∗,D) ≈ Categorical

(
y∗, softmax

(
fθMAP(x∗)√

1 + π
8 diag(Λ)

))
, (18)

where

Λ = (∇θfθ(x∗)|TθMAP
)Σ(∇θfθ(x∗)|θMAP). (19)

Although probit approximation provably preserves decision boundary in binary sigmoid classification
(Kristiadi et al., 2020), it does hold for softmax multiclass classification.

A.3 LAPLACE BRIDGE

The Laplace bridge (MacKay, 1998; Daxberger et al., 2021a) maps a GaussianN (µ,Σ) to a Dirichlet
distribution D(α) over classes with

αi =
1

Σii

(
1− 2

C
+

exp(µi)

C2

∑
j

exp(−µj)

)
, (20)

where C denotes the number of classes. Similar to the generalized probit approximation, it also
ignores the covariance terms and only considers the diagonal of the covariance Σii.

A.4 EMPIRICAL COMPARISON

Figure 3 shows a comparison of these approximations in fine-tuning Llama2-7B and applying full
Laplace-LoRA post-hoc. Specifically, we considered Monte Carlo sampling using the full covariance
(MC joint), Monte Carlo sampling only using the diagonal covariance (MC indep), generalized probit
approximation (probit), and Laplace bridge (bridge). MC joint consistently achieves highest accuracy
and among the best NLL, while bridge is often the worst, probit and MC indep can sometimes give
suboptimal performance. This is likely due to bridge, probit and MC indep are all approximations that
ignored the covariances between logits, whereas MC joint faithfully approximates the true predictive
posterior.
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Figure 3: Fine-tuning of LlaMA2-7B across six common sense reasoning tasks, comparing different
Laplace predictive posterior approximations: Laplace bridge approximation (bridge), generalized
probit approximation (probit), Monte Carlo sampling using the diagonal covariance (MC indep), and
Monte Carlo sampling using the full covariance (MC joint).

Task Prompt
Winogrande (WG-S/WG-M) Select one of the choices that answers the following question:

{question} Choices: A. {option1}. B {option2}. Answer:
ARC (ARC-C/ARC-E) Select one of the choices that answers the following question:

{question} Choices: A. {choice1}. B. {choice2}.
C. {choice2}. D. {choice2}. Answer:

Openbook QA (OBQA) Select one of the choices that answers the following question:
{question} Choices: A. {choice1}. B. {choice2}.

C. {choice2}. D. {choice2}. Answer:
BoolQ Answer the question with only True or False:

{question} Context: {passage}.

Table 5: Prompt templates for fine-tuning LlaMA-7B on common sense reasoning tasks.

B PROMPT TEMPLATES FOR LLAMA2 COMMON SENSE REASONING TASKS

We present our prompt templates used to fine-tune LlaMA2 on common sense reasoning tasks in
Table 5. For ARC datasets, although the majority of quesstions have four choices, there are a tiny
amount of questions with three or five choices which we remove for consistency. In ARC-C, there are
1/1119 with three choices and 1/1119 with five choices in the training set; 3/299 with three choices
and 1/299 with five choices in the evaluation set. In ARC-E, there are 6/2251 with three choices and
4/2251 with five choices in the trainng set; 1/570 with three choices and 2/570 with five choices in
the evaluation set.

C HYPERPARAMETERS

We follow the default hyperparameters from Huggingface’s Transformer (Wolf et al., 2020) and
PEFT (Mangrulkar et al., 2022) libraries. Hyperparameters used for fine-tuning RoBERTa-base and
RoBERTa-large with LoRA are shown in Table 6, those for fine-tuning LlaMA-7B are shown in
Table 7. Note the only differences between the two settings are a smaller batch size to fit into our
GPU memory, and a longer max sequence length to account for prompt length.
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Hyperparameter Value
LoRA r 8
LoRA α 16

Dropout Probability 0.1
Weight Decay 0
Learning Rate 5× 10−5

Learning Rate Scheduler Linear
Batch Size 32

Max Sequence Length 256

Table 6: Hyperparameters used in fine-tuning RoBERTa-base and RoBERTa-large with LoRA.

Hyperparameter Value
LoRA r 8
LoRA α 16

Dropout Probability 0.1
Weight Decay 0
Learning Rate 5× 10−5

Learning Rate Scheduler Linear
Batch Size 4

Max Sequence Length 300

Table 7: Hyperparameters used in fine-tuning LlaMA-7B with LoRA.

D METRICS FOR UNCERTAINTY QUANTIFICATION

There are two commonly used metrics for measuring uncertainty quantification in neural networks:
negative log-likelihood (NLL) and expected calibration error (ECE). NLL computes the sum of
negative expected log probability of predicting the true label,

NLL =

N∑
i=1

− logP (ŷi = yi), (21)

where P (ŷi) is the model’s output distribution, yi is the true label. NLL is also equivalent to cross-
entropy between the one-hot data distribution and the model’s output distribution. NLL encourages
the model to give high probability to correct answers. If the model is overconfident in a wrong
answer, then the probability of giving the right answer would be low which raises NLL. On the other
hand, ECE measures the alignment between model’s confidence and accuracy, by binning the highest
predicted probabilities and compute a weighted average between the difference of average accuracy
and confidence in each bin,

ECE =

M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (22)

where acc(Bm) and conf(Bm) are the average accuracy and average confidence in each bin,

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), conf(Bm) =
1

|Bm|
∑
i∈Bm

P (ŷi), (23)

and |Bm| is the number of examples in bin m. However, expected calibration error cannot be
optimized directly like negative log-likelihood, as a completely random model will have the same
accuracy and confidence for each datapoint, thus achieving zero ECE (Ashukha et al., 2020).

E OPTIMIZING LAPLACE PRIOR PRECISION

In this section, we present how we optimize the Laplace prior precision. When there is only a training
set available with no validation set (such as in Figure 1, 4, 5 and Table 1, 8, 9), we can use the

16



Under review as a conference paper at ICLR 2024

Algorithm 1 Optimize Laplace prior precision using the training set model evidence

Initialize prior precision λ, learning rate η, optimization steps M
Obtain θMAP from a fine-tuned checkpoint, pre-compute log P (y|X,θ) and Fisher F
for step = 1, ...,M do

Compute posterior covariance Σ = F+ λI
Calculate L(y,X;θ) = log P (y|X,θ) + log P (θ) = log P (y|X,θ) + λ||θMAP||22
Perform a gradient step with respect to λ to maximize log model evidence (Eq.13):

λ← λ+ η∇λ

(
− L(y,X;θMAP) +

1
2 log |Σ|

)
end for

Algorithm 2 Optimize Laplace prior precision using validation log-likelihood

Initialize prior precision λ, learning rate η, batch size b, validation set (X,y)
Obtain θMAP from a fine-tuned checkpoint, pre-compute mean fθMAP , Jacobian J = ∇θfθ(X)|θMAP ,
Fisher F
for step = 1, ...,M do

Randomly sample a batch of validation data Xb,yb with corresponding Jacobian Jb

Compute posterior covariance Σ = F+ λI
Calculate batch logits covariance Λb = JT

b ΣJb and Cholesky Λb = LbL
T
b

Obtain batch Bayesian model average f̃θ(Xb) = fθMAP(Xb) + Lbξ

Evaluate validation likelihood P (yb|Xb,θ) = Categorical
(
yb; softmax(f̃θ(Xb))

)
Perform a gradient step with respect to λ to maximize mini-batch validation log-likelihood:

λ← λ+ η∇λ log P (yb|Xb,θ)
end for

Laplace model evidence in Equation 13 to optimize prior precision. Our algorithm is presented in
Algorithm 1, and we chose η = 0.1, and M = 100.

When we introduce a validation set by splitting the training set (such as in Figure 8, 6, 7 and Table 2,
10, 11), we can use the validation log-likelihood to optimize the Laplace prior precision. For memory
and computational efficiency, we precompute the mean fθMAP and the Jacobian J = ∇θfθ(X)|θMAP ,
then perform mini-batch gradient descent on λ (reparametrization in Bayesian model average allows
gradient flowing through) as detailed in Algorithm 2. We chose η = 0.1, M = 1000, and b = 4.

F ADDITIONAL EXPERIMENTS

F.1 FINE-TUNING ROBERTA FOR TEXT CLASSIFICATION

In this section, we present additional results of fine-tuning RoBERTa-base (Fig. 4) and RoBERTa-large
(Fig. 5) (Liu et al., 2019) with LoRA on text classification tasks from GLUE (Wang et al., 2019b) and
SuperGLUE (Wang et al., 2019a). Results for RoBERTa-base are shown in Figure 4 and Table 8, and
results for RoBERTa-large are shown in Figure 5 and Table 9. Surprisingly, checkpoint ensemble and
Monte-Carlo (MC) dropout exhibit distinct behavior on RoBERTa models compared to LlaMA2-7B.
Checkpoint ensemble often performs much worse than the Maximum a Posteriori (MAP) estimation
in terms of Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL), while MC dropout
often offers much more improvement on RoBERTa models. We suspect this difference arises due to
an extra hidden penultimate layer with an additional dropout layer in front in the default RoBERTa
fine-tuning setup; whereas, in LlaMA2-7B fine-tuning, we have LoRA weights and dropout on LoRA
layers at the end. However, the gain from MC dropout diminishes on RoBERTa-large compared
to RoBERTa-base. On the other hand, Laplace-LoRA (LA) consistently delivers substantial gains
on any models we have tested (RoBERTa-base, RoBERTa-large, and LlaMA2-7B), demonstrating
the robustness of Laplace-LoRA. Moreover, the Last-Layer Laplace-LoRA (LLLA) offers modest
improvements as in LlaMA2-7B when optimized by Laplace model evidence, underscoring the
significance of performing Bayesian inference on all LoRA weights.

Similarly, we also conduct experiments by splitting the training set into a 80% training set and a 20%
validation set, then tune temperature and Laplace prior precision on the validation set. The results are
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Figure 4: Fine-tuning of RoBERTa-base across six GLUE and SuperGLUE tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. The vertical dashed line gives the number of training steps with optimal MAP performance.
Note that RoBERTa-base seems to fail on WNLI, but RoBERTa-large succeeds (Fig. 5).

Table 8: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-base across
six GLUE and SuperGLUE tasks. Results are evaluated at the early stopping point of 5000 gradient
steps.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 22.54.6 72.82.2 87.10.7 64.52.0 82.40.6 77.20.4
MC Drop 19.73.0 74.01.6 88.20.0 68.50.8 82.70.1 76.70.6
Ckpt Ens 21.65.8 73.92.5 87.70.6 64.31.9 81.80.5 76.60.2
LLLA 22.54.6 72.82.2 87.10.7 64.52.0 82.40.6 77.20.4
LA 22.54.6 72.82.2 87.20.7 64.52.0 82.40.6 77.20.5

ECE ↓

MAP 66.73.2 20.92.1 8.30.1 18.42.2 8.60.5 5.30.2
MC Drop 65.61.8 12.71.6 4.81.6 8.90.6 1.20.1 1.50.4

Ckpt Ens 44.63.9 8.51.3 17.90.1 5.21.0 13.60.3 12.50.3
LLLA 65.23.7 20.32.2 7.60.3 18.12.2 8.50.4 5.10.1
LA 51.43.8 12.43.4 2.30.4 12.92.0 5.00.6 3.70.2

NLL ↓

MAP 3.100.09 1.050.09 0.430.01 0.790.03 0.460.02 0.500.00
MC Drop 2.070.08 0.630.01 0.300.01 0.650.01 0.380.00 0.490.00

Ckpt Ens 0.960.02 0.560.01 0.440.00 0.630.01 0.490.00 0.550.00
LLLA 2.920.08 1.000.09 0.410.01 0.790.03 0.450.02 0.500.00
LA 1.380.06 0.640.08 0.300.00 0.690.02 0.400.01 0.490.00

shown in Figure 6 and Table 10 for RoBERTa-base, and Figure 7 and Table 11 for RoBERTa-large.
Again, full Laplace-LoRA LA offers the most improvements most of the time, and is the most robust
method overall.

F.2 FINE-TUNING LLAMA2-7B FOR COMMON SENSE REASONING

Figure 8 displays the results of tuning temperature scaling and Laplace prior precision on a held-out
validation set split from the training set. LLLA is missing a few zero checkpoint evaluation results
due to Cholesky errors. Comparing Figure 8 to Figure 1 in the main text, it is evident that splitting
the training set into a smaller training set (80% data) and a validation set (20% data) slightly impact
the accuracy of fine-tuned model.
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Figure 5: Fine-tuning RoBERTa-large across the six GLUE and SuperGLUE tasks in Fig. 4. The
vertical dashed line gives the number of training steps with optimal MAP performance.

Table 9: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-large across
six GLUE and SuperGLUE tasks. Results are evaluated at the early stopping point of 5000 gradient
steps.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 70.01.8 83.40.3 88.20.3 68.42.0 85.20.5 84.40.4
MC Drop 69.02.3 85.00.3 88.90.8 69.81.4 86.00.1 84.00.6
Ckpt Ens 68.50.7 83.20.9 88.20.5 68.82.4 84.60.4 84.30.5
LLLA 70.01.8 83.50.3 88.20.3 68.42.0 85.20.5 84.30.3
LA 70.01.8 83.50.3 88.20.3 68.42.0 85.20.5 84.40.4

ECE ↓

MAP 28.51.6 14.40.8 9.30.6 19.71.8 8.00.4 8.00.6
MC Drop 25.21.6 8.80.9 5.31.0 12.61.3 2.40.3 3.60.9

Ckpt Ens 4.20.7 14.20.5 18.90.2 7.21.2 15.70.5 15.60.3
LLLA 24.61.7 12.41.1 8.10.6 18.61.8 7.60.3 7.50.7
LA 7.20.7 5.41.0 6.21.5 8.42.1 2.10.3 3.80.5

NLL ↓

MAP 2.640.18 1.060.06 0.530.01 0.900.04 0.420.01 0.440.01
MC Drop 1.400.06 0.530.01 0.320.02 0.700.02 0.340.01 0.380.01
Ckpt Ens 0.620.01 0.470.00 0.420.00 0.600.01 0.460.00 0.470.00
LLLA 1.360.10 0.800.08 0.440.02 0.860.04 0.410.01 0.430.01
LA 0.600.02 0.400.01 0.280.00 0.640.02 0.340.01 0.370.00

F.3 DIAGONAL LAPLACE APPROXIMATION

F.3.1 ROBERTA

In this section, we present the results for Laplace-LoRA utilizing a diagonal approximation of
the Hessian. This approach is generally not found to be as effective as the Kronecker-factored
Approximate Curvature (K-FAC) (Daxberger et al., 2021a) that approximates the block diagonal
Hessian. The results on RoBERTa-base and RoBERTa-large are shown in Figure 9 Table 12, and
Figure 10 Table 13. LLLA still offers a tiny advantage over Maximum a Posteriori (MAP) in ECE
and NLL, however, LA show mixed performance across the datasets.
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Figure 6: Fine-tuning RoBERTa-base across the six GLUE and SuperGLUE tasks. The vertical
dashed line gives the checkpoint with optimal MAP performance on a held-out validation set.

Table 10: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-base
across six GLUE and SuperGLUE tasks, with a validation set split from the training set used for
tuning temperature and Laplace prior precision. Results are evaluated at the best MAP performance
checkpoint observed on the validation set.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 47.96.0 70.90.9 86.40.6 63.91.2 81.80.3 77.20.2
MC Drop 47.96.0 72.40.9 87.10.3 68.80.9 82.60.1 76.60.4
Ckpt Ens 47.96.0 71.80.9 86.30.5 64.70.3 81.40.7 77.20.1
Temp 47.96.0 72.60.3 86.50.3 65.40.8 81.80.8 77.30.2
LLLA 46.010.0 72.60.3 86.40.4 65.30.7 81.80.7 77.40.2
LA 48.47.7 72.60.3 86.40.3 65.40.6 81.70.7 77.40.2

ECE ↓

MAP 6.34.3 17.81.4 10.20.2 22.81.1 10.40.9 9.20.1
MC Drop 6.44.4 9.01.7 6.30.4 12.20.5 2.80.3 3.40.1
Ckpt Ens 6.22.3 8.80.9 15.70.6 5.51.0 13.10.5 10.60.1
Temp 5.51.7 4.51.3 1.90.3 5.80.9 2.90.6 3.50.7
LLLA 6.87.8 6.90.7 2.60.4 16.41.4 7.40.3 6.80.2
LA 4.75.2 2.71.0 2.20.7 5.50.5 2.80.6 1.90.5

NLL ↓

MAP 0.700.01 0.760.03 0.660.04 1.000.02 0.500.02 0.540.00
MC Drop 0.700.01 0.580.03 0.390.01 0.720.01 0.390.00 0.500.00
Ckpt Ens 0.690.00 0.570.00 0.440.00 0.630.00 0.490.00 0.530.00
Temp 0.690.00 0.540.00 0.320.00 0.620.01 0.400.01 0.490.00
LLLA 0.690.00 0.560.01 0.330.00 0.780.03 0.440.00 0.510.00
LA 0.690.00 0.540.00 0.340.01 0.620.01 0.390.00 0.480.00

F.3.2 LLAMA2-7B

On LlaMA2-7B, both LLLA and LA show mixed performance and do not offer consistent improve-
ments as shown in Figure 11 and Table 14. Specifically, the accuracy of diagonal LA is much worse
than MAP on ARC datasets, and ECE is worse than MAP on ARC-E, OBQA and BoolQ.

On the other hand, when we split a validation set from the training set and tune the Laplace prior
precision using the validation log-likelihood, the results are much better, as shown in Figure 12 and
Table 15.
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Figure 7: Fine-tuning RoBERTa-large across the six GLUE and SuperGLUE tasks. The vertical
dashed line gives the checkpoint with optimal MAP performance on a held-out validation set.

Table 11: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-large
across six GLUE and SuperGLUE tasks, with a validation set split from the training set used for
tuning temperature and Laplace prior precision. Results are evaluated at the best MAP performance
checkpoint observed on the validation set.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 65.32.7 82.20.9 88.50.7 69.31.9 85.30.6 84.40.6
MC Drop 60.64.0 82.20.3 88.70.7 69.80.8 85.10.3 84.00.6
Ckpt Ens 65.32.7 80.70.3 88.61.1 68.81.0 85.20.4 84.30.8
Temp 65.32.7 82.20.9 88.50.7 69.31.9 85.30.6 84.40.6
LLLA 65.32.7 82.20.9 88.50.7 69.31.9 85.30.6 84.40.6
LA 65.32.7 82.30.8 88.50.7 69.32.0 85.30.5 84.40.6

ECE ↓

MAP 30.03.5 13.70.4 9.20.7 22.00.8 8.80.8 10.50.6
MC Drop 24.92.6 8.80.8 6.00.9 15.11.1 3.30.8 5.50.4
Ckpt Ens 7.73.0 13.11.2 18.00.5 3.31.6 15.00.3 14.40.1
Temp 8.12.2 2.60.7 3.10.4 6.41.3 2.70.8 1.90.7
LLLA 12.70.9 3.31.0 3.00.5 13.11.2 4.00.4 5.30.8
LA 6.83.3 3.11.1 2.60.7 4.71.7 2.20.2 1.70.4

NLL ↓

MAP 1.630.09 0.770.07 0.590.06 1.140.02 0.460.02 0.560.01
MC Drop 1.020.13 0.480.06 0.330.01 0.790.02 0.360.01 0.410.00
Ckpt Ens 0.650.02 0.490.01 0.420.00 0.610.01 0.460.00 0.460.00
Temp 0.650.01 0.410.01 0.280.02 0.610.01s 0.360.00 0.370.01
LLLA 0.690.02 0.400.02 0.270.01 0.730.03 0.360.01 0.400.01
LA 0.640.00 0.390.01 0.270.01 0.610.01 0.350.01 0.370.01

G OUT-OF-DISTRIBUTION EVALUATION

Here we present the specific far OOD MMLU datasets we used for evaluations in Table 3 and Table 4.
The specific task splits we selected for each subject are shown in Table 16 assigned by Hendrycks
et al. (2020).
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Figure 8: Fine-tuning of LlaMA2-7B across six common sense reasoning tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. The vertical dashed line gives the checkpoint with optimal MAP performance on a held-out
validation set.
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Figure 9: Fine-tuning of RoBERTa-base across six GLUE and SuperGLUE tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. The vertical dashed line gives the number of training steps with optimal MAP performance.
LA and LLLA using diagonal Fisher approximation.
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Table 12: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-base across
six common GLUE and SuperGLUE tasks. Results are evaluated at the early stopping point of 5000
gradient steps. LA and LLLA using diagonal Fisher approximation.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 22.54.6 72.82.2 87.10.7 64.52.0 82.40.6 77.20.4
MC Drop 19.73.0 74.01.6 88.20.0 68.50.8 82.70.1 76.70.6
Ckpt Ens 21.65.8 73.92.5 87.70.6 64.31.9 81.80.5 76.60.2
LLLA 22.54.6 72.82.2 87.10.7 64.52.0 82.40.6 77.20.4
LA 22.54.6 72.72.1 87.10.5 64.71.9 82.30.7 77.20.5

ECE ↓

MAP 66.73.2 20.92.1 8.30.1 18.42.2 8.60.5 5.30.2
MC Drop 65.61.8 12.71.6 4.81.6 8.90.6 1.20.1 1.50.4

Ckpt Ens 44.63.9 8.51.3 17.90.1 5.21.0 13.60.3 12.50.3
LLLA 64.03.7 19.62.1 7.50.2 17.42.3 7.70.5 4.60.1
LA 33.74.0 14.12.8 25.00.5 6.01.9 13.11.4 16.40.5

NLL ↓

MAP 3.100.09 1.050.09 0.430.01 0.790.03 0.460.02 0.500.00
MC Drop 2.070.08 0.630.01 0.300.01 0.650.01 0.380.00 0.490.00

Ckpt Ens 0.960.02 0.560.01 0.440.00 0.630.01 0.490.00 0.550.00
LLLA 2.590.10 0.930.09 0.390.01 0.770.03 0.440.02 0.500.00
LA 0.800.00 0.600.01 0.510.01 0.630.00 0.460.01 0.570.01
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Figure 10: Fine-tuning of RoBERTa-large across six GLUE and SuperGLUE tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. The vertical dashed line gives the number of training steps with optimal MAP performance.
LA and LLLA using diagonal Fisher approximation.
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Table 13: Comparison of different post-hoc methods applied to the fine-tuned RoBERTa-large across
six common GLUE and SuperGLUE tasks. Results are evaluated at the early stopping point of 5000
gradient steps. LA and LLLA using diagonal Fisher approximation.

Methods Metrics WNLI RTE MRPC WiC CoLA BoolQ

ACC ↑

MAP 70.01.8 83.40.3 88.20.3 68.42.0 85.20.5 84.40.4
MC Drop 69.02.3 85.00.3 88.90.8 69.81.4 86.00.1 84.00.6
Ckpt Ens 68.50.7 83.20.9 88.20.5 68.82.4 84.60.4 84.30.5
LLLA 70.01.8 83.50.3 88.20.3 68.42.0 85.20.5 84.40.4
LA 70.01.8 83.60.5 88.00.3 68.52.2 85.30.6 84.40.4

ECE ↓

MAP 28.51.6 14.40.8 9.30.6 19.71.8 8.00.4 8.00.6
MC Drop 25.21.6 8.80.9 5.31.0 12.61.3 2.40.3 3.60.9

Ckpt Ens 4.20.7 14.20.5 18.90.2 7.21.2 15.70.5 15.60.3
LLLA 22.43.0 12.01.5 8.20.3 17.81.8 6.70.4 6.70.7
LA 14.20.8 23.81.0 28.30.2 9.52.8 17.30.6 20.20.5

NLL ↓

MAP 2.640.18 1.060.06 0.530.01 0.900.04 0.420.01 0.440.01
MC Drop 1.400.06 0.530.01 0.320.02 0.700.02 0.340.01 0.380.01

Ckpt Ens 0.620.01 0.470.00 0.420.00 0.600.01 0.460.00 0.470.00
LLLA 0.880.05 0.660.06 0.390.02 0.820.03 0.390.01 0.410.01
LA 0.640.01 0.550.01 0.540.01 0.620.00 0.450.01 0.500.00
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Figure 11: Fine-tuning of LlaMA2-7B across six common sense reasoning tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. Laplace (diagonal) prior precision is tuned using model evidence.
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Table 14: Comparison of different post-hoc methods applied to the fine-tuned LlaMA2-7B across six
common sense reasoning tasks. Results are evaluated at the early stopping point of 5000 gradient
steps.

Methods Metrics WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

MAP 67.40.3 66.30.6 84.71.5 73.40.4 78.70.4 86.10.2
MC Drop 67.80.1 65.31.0 85.01.3 73.20.5 79.50.2 86.00.3
Ckpt Ens 67.40.3 66.60.8 85.90.2 73.50.7 79.10.2 86.00.3
LLLA 67.70.3 65.51.4 84.61.2 73.60.7 78.70.7 86.00.3
LA 67.40.4 63.21.9 82.80.2 73.51.1 78.70.4 86.10.3

ECE ↓

MAP 31.20.3 31.00.5 13.41.3 23.00.1 16.10.6 4.00.5
MC Drop 29.40.3 29.60.8 12.41.2 22.20.2 15.00.4 4.10.4
Ckpt Ens 27.60.6 25.11.6 9.00.3 15.50.2 10.10.3 0.70.2

LLLA 23.31.7 20.92.6 11.81.9 22.50.6 15.90.3 4.10.6
LA 11.60.5 18.30.5 16.63.7 6.61.2 17.21.2 17.00.9

NLL ↓

MAP 3.150.10 3.280.29 1.260.13 1.510.05 0.990.05 0.350.01
MC Drop 2.810.11 2.820.21 1.110.10 1.410.03 0.950.04 0.350.01
Ckpt Ens 1.840.22 1.930.22 0.630.01 0.760.01 0.680.03 0.340.00

LLLA 1.020.10 1.300.11 0.900.24 1.420.05 0.960.05 0.350.01
LA 0.640.01 1.000.04 0.570.03 0.550.01 0.690.01 0.440.01
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Figure 12: Fine-tuning of LlaMA2-7B across six common sense reasoning tasks (presented column-
wise, with number of training examples in brackets), evaluated on the test set every 1000 gradient
steps. The vertical dashed line gives the checkpoint with optimal MAP performance on a held-out
validation set. Temperature scaling and Laplace (diagonal) prior precision are tuned on the validation
set.
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Table 15: Comparison of different post-hoc methods applied to the fine-tuned LlaMA2-7B across
six common sense reasoning tasks, with a validation set split from the training set used for tuning
temperature and Laplace prior precision. Results are evaluated at the best MAP performance
checkpoint observed on the validation set.

Methods Metrics WG-S ARC-C ARC-E WG-M OBQA BoolQ

ACC ↑

MAP 67.00.6 64.91.1 85.20.6 73.70.9 77.70.8 85.80.4
MC Drop 66.70.3 64.91.9 85.10.5 73.50.9 77.70.2 85.90.4
Ckpt Ens 66.70.3 64.91.1 85.20.6 73.81.0 78.20.2 85.40.3
Temp 67.00.6 64.91.1 85.20.6 73.70.9 77.70.8 85.80.4
LLLA 66.70.3 64.41.0 85.10.8 73.11.2 77.20.3 85.70.4
LA 66.50.3 66.01.2 85.01.2 73.11.1 77.30.3 85.70.5

ECE ↓

MAP 30.81.8 26.11.4 8.90.3 24.91.3 9.81.0 7.40.1
MC Drop 29.51.6 25.60.7 8.80.6 23.51.2 8.80.8 7.50.1
Ckpt Ens 25.21.6 26.11.4 8.90.3 22.81.4 4.70.5 3.20.5
Temp 12.80.9 4.61.0 4.70.8 6.31.6 7.22.6 2.50.3

LLLA 11.81.1 6.01.8 3.70.5 4.52.2 6.20.5 2.60.9
LA 6.91.5 7.30.6 3.11.2 4.31.3 4.31.1 2.90.5

NLL ↓

MAP 2.750.57 1.640.19 0.540.03 2.430.50 0.710.03 0.430.01
MC Drop 2.540.49 1.550.16 0.520.04 2.120.35 0.710.04 0.430.01
Ckpt Ens 1.310.04 1.640.18 0.540.03 1.890.24 0.650.02 0.350.01

Temp 0.680.01 0.900.01 0.430.02 0.580.01 0.670.02 0.350.00

LLLA 0.680.02 0.950.03 0.440.01 0.570.01 0.660.02 0.350.00

LA 0.660.02 0.860.03 0.400.02 0.550.01 0.630.01 0.350.01

Subject Task
Computer Science (CS) college computer science

computer security
high school computer science

machine learning
Engineering (Eng) electrical engineering

Law international law
jurisprudence

professional law
Health anatomy

clinical knowledge
college medicine

human aging
nutrition

professional medicine
virology

Table 16: Far OOD MMLU subjects and tasks.
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