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A STATISTICAL DISTANCES OVER GAUSSIAN DISTRIBUTIONS

We first introduce the Wasserstein distance or the earth mover distance.
Definition 1. The Wasserstein distance or earth-mover distance with p norm is defined as below:

Wp(Pr,Pg) = ( inf
�2⇧(Pr,Pg)

E(x,y)⇠�

⇥
kx� ykp

⇤
)1/p . (9)

where ⇧(Pr,Pg) denotes the set of all joint distributions �(x, y) whose marginals are respectively
Pr and Pg . Intuitively, when viewing each distribution as a unit amount of earth/soil, the Wasserstein
distance or earth-mover distance takes the minimum cost of transporting “mass” from x to y to
transform the distribution Pr into the distribution Pg. This distance is also called the quadratic
Wasserstein distance when p = 2.

In this paper, we mainly exploit the quadratic Wasserstein distance over Gaussian distributions.
Besides this distance, we also discuss other distribution distances as uniformity metrics and make
comparisons with the Wasserstein distance. Specifically, the Kullback-Leibler divergence and the
Bhattacharyya distance over Gaussian distributions are provided in Lemma 2 and Lemma 3 respec-
tively. Both distances require full-rank covariance matrices, making them impropriate to conduct
dimensional collapse analysis. In contrast, our quadratic Wasserstein distance-based uniformity
metric is free of such a requirement.
Lemma 2 (Kullback-Leibler divergence (Lindley & Kullback, 1959)). Suppose two random variables
Z1 ⇠ N (µ1,⌃1) and Z2 ⇠ N (µ2,⌃2) obey multivariate normal distributions, then Kullback-
Leibler divergence between Z1 and Z2 is:

DKL(Z1,Z2) =
1

2
((µ1 � µ2)

T⌃�1
2 (µ1 � µ2) + tr(⌃�1

2 ⌃1 � I) + ln
det⌃2

det⌃1
).
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Lemma 3 (Bhattacharyya Distance (Bhattacharyya, 1943)). Suppose two random variables Z1 ⇠
N (µ1,⌃1) and Z2 ⇠ N (µ2,⌃2) obey multivariate normal distributions, ⌃ = 1

2 (⌃1 +⌃2), then
bhattacharyya distance between Z1 and Z2 is:

DB(Z1,Z2) =
1

8
(µ1 � µ2)

T⌃�1(µ1 � µ2) +
1

2
ln

det⌃p
det⌃1 det⌃2

.

B PROOF OF THEOREM 2

We first need the following lemma, whose proof is collected in the end of this section.

Lemma 4. Let Z ⇠ N (0,�2Im) and Y = Z/kZk2. Then the probability density function of Yi, the
i-th coordinate of Y is:

fYi
(yi) =

�(m/2)p
⇡�((m� 1)/2)

(1� y2i )
(m�3)/2, 8 yi 2 [�1, 1].

We are ready to prove Theorem 2.

Proof of Theorem 2. According to the Lemma 4, the pdf of Yi and bYi are:

fYi
(y) =

�(m/2)p
⇡�((m� 1)/2)

(1� y2)(m�3)/2, fbYi
(y) =

r
m

2⇡
exp{�my2

2
}.

Then the Kullback-Leibler divergence between Yi and bYi is

DKL(YikbYi) =

Z 1

�1
fYi

(y)[log fYi
(y)� log fbYi

(y)]dy

=

Z 1

�1
fYi

(y)[log
�(m/2)p

⇡�((m� 1)/2)
+

m� 3

2
log(1� y2)� log

r
m

2⇡
+

my2

2
]dy

= log

r
2

m

�(m/2)

�((m� 1)/2)
+

Z 1

�1
fYi

(y)[
m� 3

2
log(1� y2) +

my2

2
]dy.

Letting µ = y2, we have y =
p
µ and dy = 1

2µ
� 1

2 du. Thus,

A :=

Z 1

�1
fYi

(y)[
m� 3

2
log(1� y2) +

my2

2
]dy

= 2

Z 1

0

�(m/2)p
⇡�((m� 1)/2)

(1� y2)
m�3

2 [
m� 3

2
log(1� y2) +

my2

2
]dy

=
�(m/2)p

⇡�((m� 1)/2)

Z 1

0
(1� µ)

m�3
2 [

m� 3

2
log(1� µ) +

m

2
µ]µ� 1

2 dµ

=
�(m/2)p

⇡�((m� 1)/2)

m� 3

2

Z 1

0
(1� µ)

m�3
2 µ� 1

2 log(1� µ)dµ

+
�(m/2)p

⇡�((m� 1)/2)

m

2

Z 1

0
(1� µ)

m�3
2 µ

1
2 dµ.
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By using the property of Beta distribution, and the inequality that �µ
1�µ  log(1� µ)  �µ, we have

A1 :=
�(m/2)p

⇡�((m� 1)/2)

m� 3

2

Z 1

0
(1� µ)

m�3
2 µ� 1

2 log(1� µ)dµ

 � �(m/2)p
⇡�((m� 1)/2)

m� 3

2

Z 1

0
(1� µ)

m�3
2 µ

1
2 dµ

= � �(m/2)p
⇡�((m� 1)/2)

m� 3

2
B(

3

2
,
m� 1

2
) and

A2, :=
�(m/2)p

⇡�((m� 1)/2)

m

2

Z 1

0
(1� µ)

m�3
2 µ

1
2 dµ

=
�(m/2)p

⇡�((m� 1)/2)

m

2
B(

3

2
,
m� 1

2
).

Then, for A, we have

A = A1 +A2  � �(m/2)p
⇡�((m� 1)/2)

m� 3

2
B(

3

2
,
m� 1

2
) +

�(m/2)p
⇡�((m� 1)/2)

m

2
B(

3

2
,
m� 1

2
)

=
3

2

�(m/2)p
⇡�((m� 1)/2)

B(
3

2
,
m� 1

2
) =

3

2

�(m/2)p
⇡�((m� 1)/2)

�(3/2)�((m� 1)/2)

�((m+ 2)/2)

=
3

2

�(3/2)�(m/2)p
⇡�((m+ 2)/2)

=
3

2

(
p
⇡/2)�(m/2)p

⇡�((m+ 2)/2)
=

3

4

�(m/2)

�((m+ 2)/2)
.

Using the Stirling formula, we have �(x+ ↵) ! �(x)x↵ as x ! 1 and thus

lim
m!1

DKL(YikbYi) = lim
m!1

log

r
2

m

�(m/2)

�((m� 1)/2)
+ lim

m!1
A

 lim
m!1

log

r
2

m

�((m� 1)/2)(m�1
2 )1/2

�((m� 1)/2)
+ lim

m!1

3

4

�(m/2)

�((m+ 2)/2)

= lim
m!1

log

r
2

m

r
m� 1

2
+

3

4

�(m/2)

�(m/2)m
= lim

m!1
log

r
m� 1

m
+

3

4m
= 0.

We further use T2 inequality (Van Handel, 2016, Theorem 4.31) to derive the quadratic Wasserstein
metric (Van Handel, 2016, Definition 4.29) as:

lim
m!1

W2(Yi, bYi)  lim
m!1

r
2

m
DKL(YikbYi) = 0.

B.1 PROOFS FOR SUPPORTING LEMMAS

Proof of Lemma 4. Let Z = [Z1, Z2, · · · , Zm] ⇠ N (0,�2Im), then Zi ⇠ N (0,�2), 8i 2 [1,m].
Let U = Zi/� ⇠ N (0, 1), V =

Pm
j 6=i(Zj/�)2 ⇠ X 2(m� 1), then U and V are independent with

each other. The random variable T = Up
V/(m�1)

follows the Student’s t-distribution with m � 1

degrees of freedom, and its probability density function (pdf) is:

fT (t) =
�(m/2)p

(m� 1)⇡�((m� 1)/2)
(1 +

t2

m� 1
)�m/2.

For random variable Yi, we have

Yi =
ZipPm
i=1 Z

2
i

=
Ziq

Z2
i +

Pm
j 6=i Z

2
j

=
Zi/�q

(Zi/�)2 +
Pm

j 6=i(Zj/�)2
=

Up
U2 + V

,
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and then T = Up
V/(m�1)

=
p
m�1Yip
1�Y 2

i

, Yi = Tp
T 2+m�1

. Therefore, the cumulative distribution

function (cdf) of T is:

FYi(yi) = P ({Yi  yi}) =
⇢
P ({Yi  yi}) yi  0
P ({Yi  0}) + P ({0 < Yi  yi}) yi > 0

=

(
P ({ Tp

T 2+m�1
 yi}) yi  0

P ({ Tp
T 2+m�1

 0}) + P ({0 < Tp
T 2+m�1

 yi}) yi > 0

=

(
P ({ T 2

T 2+m�1 � y2i , T  0}) yi  0

P ({T  0}+ P ({ T 2

T 2+m�1  y2i , T > 0}) yi > 0

=

8
<

:

P ({T 
p
m�1yip
1�y2

i

}) yi  0

P ({T  0}+ P ({0 < T 
p
m�1yip
1�y2

i

}) yi > 0

= P ({T 
p
m� 1yip
1� y2i

}) = FT (

p
m� 1yip
1� y2i

).

The probability density function of Yi can then be derived as:

fYi
(yi) =

d

dyi
FYi(yi) =

d

dyi
FT (

p
m� 1yip
1� y2i

)

= fT (

p
m� 1yip
1� y2i

)
d

dyi
(

p
m� 1yip
1� y2i

)

= [
�(m/2)p

(m� 1)⇡�((m� 1)/2)
(1� y2i )

m/2][
p
m� 1(1� y2i )

�3/2]

=
�(m/2)p

⇡�((m� 1)/2)
(1� y2i )

(m�3)/2.

C EXAMINING THE FOUR PROPERTIES FOR TWO UNIFORMITY METRICS

C.1 PROOF OF THEOREM 1: EXAMINING THE FOUR PROPERTIES FOR �LU

Property 1 can be easily verified for �LU and thus we skip the verification. We only examine the
other three properties for the uniformity metric �LU .

First, we prove that �LU does not satisfy Property 2. Due to the definition of LU in Eqn. (2), we
have

LU (D ]D) := log
1

2n(2n� 1)/2

0

@4
nX

i=2

i�1X

j=1

e�tkzi�zjk2
2 +

nX

i=1

e�tkzi�zik2
2

1

A

= log
1

2n(2n� 1)/2

0

@4
nX

i=2

i�1X

j=1

e�tkzi�zjk2
2 + n

1

A .

(10)

Letting G =
Pn

i=2

Pi�1
j=1 e

�tkzi�zjk2
2 , we have

G =
nX

i=2

i�1X

j=1

e�tkzi�zjk2
2 

nX

i=2

i�1X

j=1

e�tkzi�zik2
2 = n(n� 1)/2,
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and G = n(n� 1)/2 if and only if z1 = z2 = . . . = zn. Thus

LU (D ]D)� LU (D) = log
4G+ n

2n(2n� 1)/2
� log

G

n(n� 1)/2

= log
(4G+ n)n(n� 1)/2

2nG(2n� 1)/2
= log

(4G+ n)(n� 1)

4nG� 2G

= log
4nG� 4G+ n2 � n

4nG� 2G
� log 1 = 0.

The above equality holds if and only if G = n(n� 1)/2, which requires z1 = z2 = ... = zn, a trivial
case when all representations collapse to one constant point. We have excluded this trivial case, and
thus �LU (D ]D) < �LU (D). Therefore, the uniformity metric �LU does not satisfy Property 2.

Second, we prove that �LU does not satisfy Property 3. Letting bzi = zi � zi and bzj = zj � zj , we
have

LU (D �D) := log
1

n(n� 1)/2

nX

i=2

i�1X

j=1

e�tkbzi�bzjk2
2 .

By the definitions of bzi and bzj , we have kbzik2 =
p
2kzik2, kbzjk2 =

p
2kzjk2, and hbzi,bzji =

2hzi, zji. Thus

kbzi � bzjk22 = 2kzik22 + 2kzjk22 � 4hzi, zji = 2kzi � zjk22 � kzi � zjk22.
Therefore, �LU (D � D) � �LU (D), indicating that the uniformity metric �LU does not satisfy
the Property 3.

Third, we prove that the existing metric �LU does not satisfy the Property 4. Letting bzi = zi � 0k

and bzj = zj � 0k, we have

LU (D � 0k) := log
1

n(n� 1)/2

nX

i=2

i�1X

j=1

e�tkbzi�bzjk2
2 .

By the definitions of bzi and bzj , we have kbzik2 = kzik2, kbzjk2 = kzjk2, hbzi,bzji = hzi, zji, and
thus

kbzi � bzjk22 = kbzik22 + kbzjk22 � 2hbzi,bzji = kzik22 + kzjk22 � 2hzi, zji = kzi � zjk22.
Therefore, �LU (D � 0k) = �LU (D), indicating that the uniformity metric �LU does not satisfy
Property 4.

C.2 PROOF OF THEOREM 3: EXAMINING THE FOUR PROPERTIES FOR �W2

Property 1 can be easily verified for �W2, and thus the proof is skipped. We only examine the rest
three properties for the proposed uniformity metric �W2.

First, we prove that our proposed metric �W2 satisfies Property 2. Let bµ and b⌃ be defined as above,
for D ]D = {z1, z2, ..., zn, z1, z2, ..., zn}, the mean and covariance estimators are

eµ =
1

2n

nX

i=1

2zi = bµ, e⌃ =
1

2n

nX

i=1

2(zi � eµ)T (zi � eµ) = b⌃,

which agree with those for D. Then we have

W2(D ]D) :=

s

kbµk22 + 1 + tr(b⌃)� 2p
m

tr(b⌃1/2) = W2(D).

Therefore, our proposed metric �W2 satisfies Property 2.

Second, we prove that �W2 satisfies Property 3. Let ezi = zi � zi 2 R2m. For D � D, the mean
and covariance estimators are:

eµ =

✓
bµ
bµ

◆
, e⌃ =

✓b⌃ b⌃
b⌃ b⌃

◆
.
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We easily have

e⌃1/2 =

✓b⌃1/2/
p
2 b⌃1/2/

p
2

b⌃1/2/
p
2 b⌃1/2/

p
2

◆
, tr(e⌃) = 2 tr(b⌃), and tr(e⌃1/2) =

p
2 tr(b⌃1/2).

Thus

W2(D �D) :=

s

keµk22 + 1 + tr(e⌃)� 2p
2m

tr(e⌃1/2)

=

s

2kbµk22 + 1 + 2 tr(b⌃)� 2
p
2p

2m
tr(b⌃1/2)

>

s

kbµk22 + 1 + tr(b⌃)� 2p
m

tr(b⌃1/2) = W2(D).

Therefore, �W2(D �D) < �W2(D), indicating that our proposed metric �W2 could satisfy the
Property 3.

Third, we prove that our proposed metric �W2 satisfies Property 4. Let ezi = zi�0k 2 Rm+k with
an overload of notation. For D � 0k, the sample mean and covariance estimators are

eµ =

✓
bµ
0k

◆
, e⌃ =

✓ b⌃ 0m⇥k

0k⇥m 0k⇥k

◆
,

where bµ and b⌃ are defined previously. Therefore, we have tr(e⌃) = tr(b⌃), tr(e⌃1/2) = tr(b⌃1/2),
and thus

W2(D � 0k) :=

s

keµk22 + 1 + tr(e⌃)� 2p
m+ k

tr(e⌃1/2)

=

s

kbµk22 + 1 + tr(b⌃)� 2p
m+ k

tr(b⌃1/2)

>

s

kbµk22 + 1 + tr(b⌃)� 2p
m

tr(b⌃1/2) = W2(D).

Therefore, �W2(D � 0k) < �W2(D), indicating that our proposed metric �W2 satisfies the
Property 4.

D FURTHER COMPARISONS BETWEEN Y AND bY

This section further compares the distributions of Y and bY.

We visually compare the distributions of Yi and bYi. To estimate the distributions of Yi and bYi, we
bin 200,000 sampled data points into 51 groups. Figure 8 compares the binning densities of Yi

and bYi when m 2 {2, 4, 8, 16, 32, 64, 128, 256}. We can observe that two distributions are highly
overlapped when m is moderately large, e.g., m � 8 or m � 16.

By binning 2,000,000 data points into 51⇥ 51 groups in two-axis, we also analyze the joint binning
densities and present 2D joint binning densities of (Yi, Yj) (i 6= j) in Figure 9(a) and (bYi, bYj) (i 6= j)
in Figure 9(b). Even if m is relatively small (i.e., 32), the densities of the two distributions are close.

E ADDITIONAL SYNTHETIC STUDIES

E.1 CORRELATION BETWEEN �LU AND �W2
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(a) m = 2 (b) m = 4 (c) m = 8 (d) m = 16

(e) m = 32 (f) m = 64 (g) m = 128 (h) m = 256

Figure 8: Comparing the binning densities of Yi and bYi with various dimensions.

(a) Density for Yi and Yj (b) Density for bYi and bYj

Figure 9: Visualization of two arbitrary dimensions for Y and bY when m = 32.

Figure 10: Uniformity analysis for vari-
ous distributions by two metrics.

We employ synthetic experiments to study the uniformity
metrics across different distributions. Specifically, we
sample 50,000 data vectors (m = 256) from different
distributions, such as the isotropic Gaussian distribution
N (0, I), the uniform distribution on the hyperrectangle
[0,1], and the mixture of Gaussians, etc. Then we nor-
malize these data vectors, and estimate the uniformity of
different distributions by two metrics. As shown in Fig. 10,
isotropic Gaussian distribution achieves the maximum val-
ues for both �W2 and �LU , which indicates that isotropic
Gaussian distribution achieves larger uniformity than other
distributions. This empirical result is consistent with Fact 1
that the isotropic Gaussian distribution (approximately) achieves the maximum uniformity.

E.2 ON INSTANCE CLONING CONSTRAINT

Figure 11: ICC analysis.

In this section, we compare the two metrics in terms
of Property 2 (ICC). Specifically, we randomly sample
1,000 data vectors from the isotropic Gaussian distribu-
tion (m = 32) and then mask 50% of their coordinates
with zeros, forming a new dataset D with an overload of
notation. To investigate the impact of instance cloning,
we create multiple clones of the dataset, such as D ]D
and D ]D ]D, which correspond to one and two times
cloning, respectively. We evaluate the two metrics on
these datasets. Figure 11 shows that the value of �LU
slightly decreases as the number of clones increases, in-
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(a) Two-dimensional visu-
alization with no collapsed
dimension

(b) Three-dimensional visualiza-
tion with one collapsed dimen-
sion

(c) Three-dimensional visualiza-
tion with no collapsed dimension

Figure 12: A case study for Property 4 and blue points are data vectors.

dicating that �LU violates the equality in Equation 4. In contrast, our proposed metric �W2 remains
constant, satisfying the equality.

E.3 UNDERSTANDING PROPERTY 4: WHY DOES IT RELATE TO DIMENSIONAL COLLAPSE?

This section delves into Property 4 through case studies. Let us begin with a thought experiment.
Consider a dataset D with instances uniformly distributed on the unit hypersphere, thereby possessing
(almost) maximal uniformity. When additional coordinates with zeros are inserted to each instance of
D, forming a new dataset D� 0k, it can no longer maintain maximal uniformity. This is because, the
new dataset only occupies a small area of the unit hypersphere. Consequently, as k increases, the
uniformity of the dataset would decrease significantly.

Let us visualize this thought experiment using synthetic studies. In Figure 12(a), we present 400
data vectors (D1) sampled from N (0, I2), which are also nearly uniformly distributed on S1. By
inserting one zero-coordinate to each instance of D1, we obtain a new dataset D1 � 01, as depicted
in Figure 12(b). We also construct another dataset D2 consisting of 400 data vectors sampled
from N (0, I3), visualized in Figure 12(c). Notably, D1 � 01 forms a ring on S2, while D2 is
almost uniformly distributed over S2. Naturally, U(D2) > U(D1 � 01). If U(D1) = U(D2)4, then
U(D1) = U(D2) > U(D1 � 01). This partially confirms the validity of Property 4.

Figure 13: Singular value spectrum of D�
0k.

Additionally, increasing the value of k in Property 4
exacerbates the degree of dimensional collapse. To il-
lustrate, consider a dataset D sampled from a multi-
variate Gaussian distribution N (0, Im/m), exhibiting a
collapse degree close to 0%. However, upon inserting
m-dimensional zero-value vectors to each instance of
D, denoted as D � 0m, half of the dimensions collapse.
Consequently, the collapse degree increases to 50%. Fig-
ure 13 visually represents the collapse of D � 0k using
the singular value spectra of the representations. It is
evident that a larger k results in a more pronounced
dimensional collapse. In summary, Property 4 corresponds to dimensional collapse.

E.4 UNDERSTANDING W2: LARGE MEANS MAY LEAD TO COLLAPSE

In this section, we explore our uniformity loss W2. This loss embodies two primary constraints.
Firstly, it promotes the covariance matrix to be isotropic (specifically Im/m). Secondly, it enforces
the mean to be zero. The latter constraint on the mean is crucial. To illustrate, we present a case study
demonstrating that deviating the mean from zero compromises uniformity, even if the covariance
matrix is precisely Im/m and thus isotropic. Means deviating from zero may result in dimensional
collapse and even constant collapse.

4Intuitively, maximal uniformity should stay constant regardless of dimensions; otherwise the corresponding
uniformity metric exhibit a preference for larger or smaller dimensions.
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(a) N (0, I2) (b) N (0.5 · 1, I2) (c) N (1 · 1, I2) (d) N (2 · 1, I2)

(e) N (4 · 1, I2) (f) N (8 · 1, I2) (g) N (16 · 1, I2) (h) N (32 · 1, I2)
Figure 14: Visualizing `2 normalized Gaussian vectors with different means.

Table 3: Parameter settings for various models in the experiments.
Models MoCo v2 BYOL BarlowTwins Zero-CL
↵max 1.0 0.2 30.0 30.0
↵min 1.0 0.2 0 30.0

Assuming X 2 R2 follows a Gaussian distribution N (0, I2), let Y = X + k · 1 such that Y ⇠
N (k · 1, I2), where 1 2 Rk represents a vector of all ones. We vary k from 0 to 32 and visualize
the `2-normalized Y’s in Figure 14 (by generating multiple independent copies). It is clear that an
excessively large means will cause representations to collapse to a single point, even if the covariance
matrix is isotropic.

F EXPERIMENT SETTINGS AND CONVERGENCE ANALYSIS

F.1 EXPERIMENT SETTINGS

To ensure fair comparisons, all experiments in Section 6 are conducted on a single 1080 GPU.
Additionally, we maintain consistency in network architecture across all models, utilizing ResNet-
18 (He et al., 2016) as the backbone and a three-layer MLP as the projector. The LARS optimizer (You
et al., 2017) is employed with a base learning rate of 0.2, accompanied by a cosine decay learning
rate schedule (Loshchilov & Hutter, 2017) for all models. Evaluation follows a linear evaluation
protocol, where models are pre-trained for 500 epochs. Evaluation involves adding a linear classifier
and training the classifier for 100 epochs while preserving the learned representations. The same
augmentation strategy is deployed across all models, encompassing various operations such as color
distortion, rotation, and cutout. Following da Costa et al. (2022), we set the temperature t = 0.2 for
all contrastive learning methods. For MoCo (He et al., 2020) and NNCLR (Dwibedi et al., 2021),
which require an additional queue to store negative samples, we set the queue size to 212. Regarding
the linear decay for weighting the quadratic Wasserstein distance, refer to Table 3 for the parameter
settings.

F.2 CONVERGENCE ANALYSIS FOR TOP-1 ACCURACY

Here we illustrate the convergence of Top-1 accuracy across all training epochs in Fig 15. Throughout
the training, we capture the model checkpoint at the end of each epoch to train a linear classifier. We
subsequently evaluate the Top-1 accuracy on unseen images from the test set (either CIFAR-10 or
CIFAR-100).
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For both CIFAR-10 and CIFAR-100, we observe that integrating the proposed uniformity metric
as an auxiliary loss significantly enhances the Top-1 accuracy, particularly in the initial stages of
training.

F.3 CONVERGENCE ANALYSIS FOR UNIFORMITY AND ALIGNMENT

This section presents the convergence of the uniformity metric and alignment loss across all training
epochs in Figure 16 and Figure 17, respectively. Throughout the training, we record the model
checkpoint at the end of each epoch to evaluate the uniformity using the proposed metric W2 and
alignment (Wang & Isola, 2020) on unseen images from the test set (either CIFAR-10 or CIFAR-100).

For both CIFAR-10 and CIFAR-100, we observe that integrating the proposed uniformity metric as
an auxiliary loss significantly improves uniformity. However, it also slightly compromises alignment
(where a smaller alignment loss indicates better alignment). It should be noted that improved
uniformity often leads to worse alignment.

(a) MoCo v2 on CIFAR-10 (b) BYOL on CIFAR-10 (c) BarlowTwins on CIFAR-10

(d) MoCo v2 on CIFAR-100 (e) BYOL on CIFAR-100 (f) BarlowTwins on CIFAR-100

Figure 15: Convergence analysis for Top-1 accuracy during training.

(a) MoCo v2 on CIFAR-10 (b) BYOL on CIFAR-10 (c) BarlowTwins on CIFAR-10

(d) MoCo v2 on CIFAR-100 (e) BYOL on CIFAR-100 (f) BarlowTwins on CIFAR-100
Figure 16: Visualizing uniformity during training
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(a) MoCo v2 on CIFAR-10 (b) BYOL on CIFAR-10 (c) BarlowTwins on CIFAR-10

(d) MoCo v2 on CIFAR-100 (e) BYOL on CIFAR-100 (f) BarlowTwins on CIFAR-100
Figure 17: Visualizing alignment during training.
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