
Appendix

Table of Contents
A Properties of the score function and process density 13

B High-level proof sketch 15
B.1 Proof overview of approximation error bound 15
B.2 Proof overview of generalization . 16
B.3 Proof overview of distribution estimation . 16

C Proofs for approximation 17

D Generalization error of score estimate 22

E Distribution estimation and proofs for concrete examples 28

F Background on neural networks 29
F.1 Path norms . 29
F.2 Approximation of helper functions . 30
F.3 Contraction inequality for vector-valued functions 33

A PROPERTIES OF THE SCORE FUNCTION AND PROCESS DENSITY

Let us recall the setup of SGMs. We are given samples from a high-dimensional probability distribu-
tion p0, and we wish to learn additional samples. We define the forward process Xt as the solution
to the SDE {

dXt = −Xtdt+
√
2dWt, 0 ≤ t ≤ T,

X0 ∼ p0,

and we note that the marginal distribution pt of Xt at time t quickly approaches the standard normal
distribution γd. The reverse process X̄t = XT−t happens to satisfy the SDE{

dX̄t = (X̄t + 2∇x log pT−t)dt+
√
2dWt, 0 ≤ t ≤ T,

X̄0 = XT ,
(10)

and so to sample the data distribution p0, we run the SDE in equation 10, but with X̄0 as a standard
normal and with the score function ∇x log pT−t replaced by an empirical estimator ŝ(t, x). This
is made possible by a technique known as score matching (Hyvärinen and Dayan, 2005; Vincent,
2011), which frames the score estimation as a supervised learning problem.

The key assumption of our analysis is that the data distribution p0 is proportional to e−
∥x∥2

2 +f(x),
where f has ’low-complexity’ in the sense of Assumptions 1 and 2. Under this assumption, we
can explicitly compute the score function and derive sub-Gaussian bounds on the forward process
density.
Lemma 1. Let γd(du) denote the standard Gaussian probability measure on Rd. Then under As-
sumption 1, the jth component of the score function of the diffusion process is given by

(∇x log pt(x))j =
1

1− e−2t

(
−xj + e−tF

j
t (x)

Gt(x)

)
, (11)

where F j
t (x) =

∫
Rd(e

−txj +
√
1− e−2tuj)e

f(e−tx+
√
1−e−2tu)γd(du) and Gt(x) =∫

ef(e
−tx+

√
1−e−2tu)γd(du).

13

Proof of Lemma 1. The forward process density is given by

pt(x) =
1

Zt

∫
e
−−∥x−e−ty∥2

2(1−e−2t) e−∥y∥2/2+f(y)dy,

where Zt is the normalization constant. We therefore have

(∇xpt(x))j =
1

Zt(1− e−2t)

(
−xjpt(x) + e−t

∫
yje

−−∥x−e−ty∥2

2(1−e−2t) e−∥y∥2/2+f(y)dy

)
and thus

(∇x log pt(x))j =
1

1− e−2t

−xj + e−t

∫
yje

−−∥x−e−ty∥2

2(1−e−2t) e−∥y∥2/2+f(y)dy∫
e
−−∥x−e−ty∥2

2(1−e−2t) e−∥y∥2/2+f(y)dy

 .

By completing the square, we have

e
− ∥x−e−ty∥2

2(1−e−2t) e−∥y∥2/2 = e
− ∥y−e−tx∥2

2(1−e−2t) e−∥x∥2/2,

and therefore, after cancellation and an appropriate change of variables, we arrive at

(∇x log pt(x))j =
1

1− e−2t

−xj + e−t

∫
yje

−−∥y−e−tx∥2

2(1−e−2t) e−∥x∥2/2+f(y)dy∫
e
−−∥y−e−tx∥2

2(1−e−2t) e−∥x∥2/2+f(y)dy


=

1

1− e−2t

−xj + e−t

∫
yje

−−∥y−e−tx∥2

2(1−e−2t) ef(y)dy∫
e
−−∥y−e−tx∥2

2(1−e−2t) ef(y)dy


=

1

1− e−2t

(
−xj + e−t

∫
(e−txj +

√
1− e−2tuj)e

f(e−tx+
√
1−e−2tu)γd(du)∫

ef(e−tx+
√
1−e−2tu)γd(du)

)

:=
1

1− e−2t

(
−xj + e−tF

j
t (x)

Gt(x)

)
.

(12)

The following pointwise sub-Gaussian bounds are used throughout this work.
Proposition 6. Under assumption 1,for all t > 0, ∥x∥ ≥ rf ,

pt(x) ≲
(
2π (1− 2β)

−1
)−d/2

e−
(1−2β)∥x∥2

2

Proof. By completing the square as in Lemma 1, we have

pt(x) =
1

Z
(2π(1− e−2t))−d/2e−∥x∥2/2

∫
Rd

e
− ∥x−e−ty∥2

2(1−e−2t) ef(y)dy.

For ∥x| ≤ rf , we then use the quadratic growth and a change of variables to bound pt:

pt(x) =
1

Z
e−∥x∥2/2

∫
Rd

ef(
√
1−e−2tu+e−tx)γd(du)

≤ 1

Z
e−∥x∥2/2

∫
Rd

eβ∥
√
1−e−2tu+e−tx∥2

γd(du)

≤ 1

Z
e−∥x∥2/2

∫
Rd

eβ(∥u∥
2+∥x∥2)γd(du)

=
(1− 2β)

−d/2

Z
e−

(1−2β)∥x∥2
2

≲
(
2π (1− 2β)

−1
)−d/2

e−
(1−2β)∥x∥2

2

14

The following lemma control the growth of F j
t and Gt.

Lemma 2. Let F j
t and Gt be as defined in Lemma 1. Let R ≥ max(rf ,

√
1
β sup∥x∥≤rf

|f(x)|).
Then

sup
∥x∥≤R

|F j
t (x)| = O

(
(1− 2β)

−d/2
eβR

2
)

and for ∥x∥ ≤ R,

(1 + 2α)
−d/2

e−αR2

≤ Gt(x) ≤ (1− 2β)
−d/2

e−βR2

.

Proof. For the lower bound on Gt, for ∥x∥ ≤ R, R sufficiently large, we have

Gt(x) =

∫
Rd

ef(e
−tx+

√
1−e−2tu)γd(du)

≥
∫
Rd

e−α∥e−tx+
√
1−e−2tu∥2

γd(du)

≥
∫
Rd

e−α(∥x∥2+∥u∥2)γd(du)

≥ (1 + 2α)
−d/2

e−αR2

.

The upper bound on Gt is proven similarly. For the upper bound on F j
t , the proof is similar: we

have for ∥x∥ ≥ R,

|F j
t (x)| =

∣∣∣∣∫
Rd

(
e−txj +

√
1− e−2tuj

)
ef(e

−tx+
√
1−e−2tu)γd(du)

∣∣∣∣
≤
∫
Rd

(∥x∥+ ∥u∥) eβ(∥x∥
2+∥u∥2)γd(du)

≤ eβR
2

(∫
Rd

e
Cf∥u∥2

2 γd(du) +

∫
Rd

∥u∥eβ∥u∥
2

γd(du)

)
= O

(
(1− 2β)

−d/2
eβR

2
)

B HIGH-LEVEL PROOF SKETCH

Before delving into the details of the proof, we give an overview of the proof technique.

B.1 PROOF OVERVIEW OF APPROXIMATION ERROR BOUND

Recall that the jth component of the score function takes the form (t, x) 7→
1

1−e−2t

(
−xj + e−t F

j
t (x)

Gt(x)

)
where F j

t (x) =
∫
(e−txj +

√
1− e−2tuj)e

f(e−tx+
√
1−e−2tu)γd(du)

and Gt(x) =
∫
ef(e

−tx+
√
1−e−2tu)γd(du). We break our approximation argument into two main

steps.

Step 1- approximation of F j
t (x)

Gj
t(x)

on the ball BR: The first step of the proof is to approximate

function F j
t (x)

Gj
t(x)

on a bounded domain. For the function F j
t , note that the integrand can be viewed

as a composition of three simple functions, namely the function x 7→ f(x), the one-dimensional
exponential map x 7→ ex, and the two-dimensional product map (x, y) 7→ xy. By assumption, f
can be approximated by a shallow neural network ϕf with low path-norm. It is well known that
the latter two maps can be approximated on bounded domains by a shallow neural networks ϕexp
and ϕprod; see the Appendix for details. We note that the complexity of the neural network needed
to approximate the exponential map x 7→ ex on the interval [−C,C] grows exponentially with
C. However, the fast tail decay of the data distribution ensures that we can restrict attention to an
interval which is not too large and still achieve good approximation bounds.

15

In turn, this allows us to approximate the integrand in the definition of F j
t by a deep neural network

x 7→ ϕprod(xj , ϕexp(ϕf (x))). We then discretize the integral with respect to γd(du) using a Monte
Carlo sampling argument, and the resulting neural network is

Φj
F,t(x) =

1

m

m∑
i=1

ϕprod(e
−txj +

√
1− e−2t(ui)j , ϕexp(ϕf (e

−tx+
√
1− e−2tui))),

for Monte Carlo sample points {ui}mi=1. The procedure for Gt(x) works very similarly, since
Gt(x) =

∫
ef(e

−tx+
√
1−e−2tu)γd(du). This gives us neural networks Φj

F,t and ΦG,t that approxi-
mate F j

t and Gt on the ball BR. By approximating the quotient map (x, y) 7→ x
y by another shallow

network ϕquot, we obtain a deep neural network approximation Φj
t := ϕquot(Φ

j
F,t(x),ΦG,t(x)) for

F j
t (x)

Gj
t(x)

, valid on BR.

Here, it is crucial that our approximation for the individual functions F j
t , Gt is in the sup norm; this

ensures that the neural network approximation to Gt is bounded away from zero (since Gt itself is
bounded away from 0), which in turn allows us to control the approximation error of the quotient
map (x, y) 7→ x

y .

Step 2 - approximation on the unbounded domain L2(pt), for fixed t: The approximation metric
we care about is ultimately not the uniform metric onBR, but the L2(pt) metric on all of Rd. To deal
with the unbounded approximation domain, we bound the tail of the density pt and use a truncation
argument; in particular, pt is sub-Gaussian by Lemma 6, so that the truncation error depends mildly
on the radius of the ball BR from Step 1. By choosing the optimal R, this gives an approximation
of F j

t

Gt
in L2(pt) for a fixed time, thus completing the second step of the proof.

B.2 PROOF OVERVIEW OF GENERALIZATION

Recall that our goal is, for each t, to bound the population risk Rt(·) at the minimizer of the empirical
risk over a class of neural networks (to be specified in the detailed proof). For technical reasons, we
work with the minimizer ŝ of a truncated version R̂t

R of the empirical risk, where the data is assumed
to be uniformly bounded along the forward process. However, we choose the truncation radius R
large enough so that the error incurred by this step is marginal. If we define Rt

R as the corresponding
R-truncated version of the population risk, then the generalization error can be decomposed as

Rt(̂s) =
(
Rt(̂s)−Rt

R(̂s)
)︸ ︷︷ ︸

truncation error

+
(
Rt

R(̂s)−Rt
R(s

∗
R)
)︸ ︷︷ ︸

generalization error

+
(
Rt

R(s
∗
R)−Rt(s∗)

)︸ ︷︷ ︸
≤0

+ Rt(s∗)︸ ︷︷ ︸
approximation error

.

Here, s∗ is the minimizer of the population risk over the hypothesis class and s∗R is the minimizer of
the R-truncated risk. The first term represents the error we create from working with the truncated
risk rather than the true risk, and we bound it using existing large deviation bounds on the OU
process from Oko et al. (2023). Term II represents the generalization error of the truncated risk.
In order to bound the Rademacher complexities of some relevant function classes, we need the
individual loss function ℓt to have certain properties (such as boundedness and Lipschitz-continuity).
Unfortunately, the loss fails to have these properties fail for the loss ℓ, but they do hold for it’s
truncated counterpart ℓtR, and this is our primary motivation for working with the truncated risk
rather than the true risk. In turn, it allows us to apply existing generalization results for neural
networks with bounded complexity to our setting.

Term 3 is actually non-negative, because Rt
R(·) ≤ Rt(·) for any R, and hence minRt

R(·) ≤
minRt(·). Term 4 is the approximation error, and thus it will be of order ϵ2, provided the complex-
ity of the hypothesis class is scaled as a suitable function of ϵ. The proof concludes by balancing the
truncation radius R and sample size N as suitable functions of ϵ.

B.3 PROOF OVERVIEW OF DISTRIBUTION ESTIMATION

There are several existing works that bound the distribution estimation error of score-based genera-
tive models in terms of the generalization error of the score function. We apply results from Benton
et al. (2023) which state that if the score generalization error is O(ϵ2) then, provided the parameters

16

of the sampling algorithm are chosen accordingly and the reverse process is stopped at time T − t0,
the learned distribution p̂ satisfies TV (p̂, pt0) = O(ϵ), where pt0 is the distribution of the forward
process at time t0 ≪ 1. All that remains is to bound TV (pt0 , pt) and choose t0 as an appropriate
function of ϵ. For this, Lemma 10 shows that TV (pt0 , p0) = O(

√
t0).

C PROOFS FOR APPROXIMATION

The following lemma is a general approximation error bound in the sup norm for functions defined
by certain integral representations. We use it to approximate the functions F j

t and Gt, since they
admit natural integral representations. The proof adapts the proof of Theorem 1 in Klusowski and
Barron (2018). Though the proof idea seems well known, we have not found the general version of
the result in the literature, so we state it here in case it may be of interest to others.
Lemma 3. Let g : Rd × Rp → R be a function such that for all K,R > 0,

1. LK,R := sup∥θ∥≤K ∥g(·, θ)∥Lip(BR) <∞,

2. CK,R := sup∥θ∥≤K, ∥x∥≤R |g(x, θ)| <∞.

Here, ∥ · ∥Lip(BR) is the Lipschitz constant of a function when restricted to the ball of radius R. Let
f : Rd → R be a function of the form

f(x) =

∫
∥θ∥≤K

g(x, θ)µ(dθ),

where µ is a Radon measure on {∥θ∥ ≤ K}. Then, for any R > 0, there exist (ai, θi)ni=1 with
ai ∈ {±1} and ∥θi∥ ≤ K such that

sup
∥x∥≤R

∣∣∣∣∣f(x)− ∥µ∥TV

m

m∑
i=1

aig(x, θi)

∣∣∣∣∣ ≤ 24∥µ∥TV√
m

· CK,R ·
√
d log(mLK,RR),

Proof. Notice that by normalizing µ and decomposing it into positive an negative parts, we can write

f(x) = ∥µ∥TV

∫
{±1}×{∥θ∥≤K}

ag(x, θ)µ̃(da, dθ),

where µ̃ is a probability measure. Let (ai, θ)mi=1 be an i.i.d. sample from µ̃m, and define fm(x; Θ) =
∥µ∥TV

m

∑m
i=1 aig(x, θi). We can view fm(x; Θ) as an empirical process on the parameter space

Θ = (ai, θi)
m
i=1 indexed by x ∈ BR. Let µ̂ denote the empirical measure associated to the samples,

and notice that for any x, x′ ∈ BR, it holds that

∥x− x′∥2L2(µ̂) ≤
1

m

m∑
i=1

|g(x, θi)− g(x′, θi)|2 ≤ L2
K,R∥x− x′∥2.

This proves that the covering number ofBR under the L2(µ̂) norm isO(LK,R(R/ϵ)
d). By Dudley’s

Theorem for empirical processes, it holds that

E sup
∥x∥≤R

|f(x)− fm(x; Θ)| ≤ 24∥µ∥TV√
m

inf
0≤t≤δ/2

∫ δ/2

t

√
logN (BR, ∥ · ∥L2(µ̂), ϵ)dϵ,

where δ = sup∥x∥≤R ∥x∥L2(µ̂). We can bound δ by CK,R, and by choosing t = O(1/m) in the
infimum in the bound from Dudley’s theorem, we find that

E sup
∥x∥≤R

|f(x)− fm(x; Θ)| ≤ 24∥µ∥TV√
m

inf
0≤t≤CK,R

∫ CK,R

t

√
log(LK,R) + d log(R/t)dt

= O

(
∥µ∥TV√

m
· CK,R ·

√
log(LK,R) + log(Rm)

)

17

The following lemmas prove that the functions F j
t and Gt can be well-approximated by neural

networks. An important feature of the result is that the approximation is done uniformly on the ball
of radius R, as opposed to in L2. The main idea of the proof is to discretize the Gaussian integrals
defining F j

t and Gt via Lemma 3, and then exploit the compositional structure of the integrands.
Lemma 4. For any t ∈ (0,∞) and 1 ≤ j ≤ d, let Gt(x) be as defined in Lemma 1. Then for any
ϵ > 0 and any R ≥ rf , there exists a neural network ϕt,G(x) such that

sup
∥x∥≤R

|ϕt,G(x)−Gt(x)| = O

(
eβR

2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
,

In addition, it holds that ∥ϕG,t∥path = O
(
eβR

2 · η(R, ϵ)
)

.

Proof. Recall that

Gt(x) :=

∫
ef(e

−tx+
√
1−e−2tu)γd(du).

Fix R > 0. We break Gt into two parts:

Gt(x) =

∫
ef(e

−tx+
√
1−e−2tu)γd,R(du) +

∫
∥u∥>R

ef(e
−tx+

√
1−e−2tu)γd(du)

:= Gt,R(x) + EG,R(x),

where γd,R(du) = I∥u∥≤R(u)γd(du). To proceed, we approximate the local part Gt,R(x) of Gt(x)
and then control the error term EG,R(x) using the tail decay of the data distribution. We apply
Lemma 3 with g(x, u) = exp(f(e−tx +

√
1− e−2tu)) and µ(du) = γd,R(du). In this case, we

have ∥µ∥TV ≤ 1,
sup

∥x∥≤R,∥u∥≤R

g(x, u) ≤ e2βR
2

(by the choice of R),

and

sup
∥u∥≤R

∥g(·, u)∥Lip(BR) ≤ ∥ef∥Lip(B√
2R) ≤ e2βR

2

sup
∥x∥≤R

∥∇f(x)∥ := e2βR
2

Df,R.

The conclusion of Lemma 3 states that there exist u1, . . . , um with sup1≤i≤m ∥ui∥ ≤ R such that

sup
∥x∥≤R

∣∣∣∣∣
∫
Rd

ef(e
−tx+

√
1−e−2tu)γd,R(du)−

∥γd,R∥TV

m

m∑
i=1

ef(e
−tx+

√
1−e−2tui)

∣∣∣∣∣ = O

(
e2βR

2

√
d

m

)

Now, by Lemma 14, there exists a ReLU neural network ϕf,exp(x) such that

sup
∥x∥≤R

∣∣∣ϕf,exp(x)− ef(x)
∣∣∣ ≲ eβR

2

ϵ.

and ϕf,exp satisfies ∥ϕf,exp∥path = O () . We define ϕG,t(x) :=
∥γd,R∥TV

m

∑m
i=1 ϕf,exp(e

−tx +√
1− e−2tui), which satisfies the approximation bound

sup
∥x∥≤R

∣∣∣ϕG,t(x)− ef(x)
∣∣∣ ≤ O

(
e2βR

2

√
d

m

)
+ sup

∥x∥≤R

∣∣∣∣∣ϕf,exp(x)− ∥γd,R∥TV

m

m∑
i=1

ef(e
−tx+

√
1−e−2tui)

∣∣∣∣∣
≤ O

(
e2βR

2

√
d

m

)
+ sup

∥y∥≤3R

∣∣∣ϕf,exp(y)− ef(y)
∣∣∣

= O

(
e2βR

2

√
d

m
+ eβR

2

ϵ

)
.

If we set m = Ω(ϵ−2de2βR
2

), then

sup
∥x∥≤R

∣∣∣ϕG,t(x)− ef(x)
∣∣∣ = O(eβR

2

ϵ)

18

It remains to bound the error term EG,R(x):

EG,R(x) =

∫
∥u∥>R

ef(e
−tx+

√
1−e−2tu)γd(du)

≤
∫
∥u∥>R

eβ(∥x∥
2+∥u∥2)γd(du)

≤ eβR
2

(1− 2β)
−d/2

e−
(1−2β)R2

2 .

We conclude that

sup
∥x∥≤R

|ϕt,G(x)−Gt(x)| = O

(
eβR

2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
.

To see the path norm bounds on ϕG,t, we have

∥ϕG,t∥path =

∥∥∥∥∥∥γd,R∥TV

m

m∑
i=1

ϕf,exp(e
−tx+

√
1− e−2tui)

∥∥∥∥∥
path

≤ 1

m

m∑
i=1

∥ϕf,exp(e−tx+
√
1− e−2tui)∥path

≤ (1 + 2R)∥ϕf,exp∥path (Behavior of path norm under scaling/translation)

≤ (1 + 2R) · eβR
2

· η(R, ϵ) (path norm of ϕf,exp)

= O
(
eβR

2

η(R, ϵ)
)

This proves the claim.

Lemma 5. For any t ∈ (0,∞) and 1 ≤ j ≤ d, let F j
t (x) denote be as defined in Lemma 1. Then

for any ϵ > 0 and any R ≥ rf , there exists a neural network ϕjt,F (x) such that

sup
∥x∥≤R

∣∣∣ϕjt,F (x)− F j
t (x)

∣∣∣ = O

(
eβR

2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
,

In addition, it holds that ∥ϕjF,t∥path = O
(
e3βR

2 · η(R, ϵ)
)

.

Proof. Recall that

F j
t (x) =

∫
Rd

hj(e−tx+
√
1− e−2tu)γd(du),

where hj(y) = yje
f(y). The proof is very similar to that of Lemma 4. Define local and global parts

F j
t,R(x) and Ej

F,R(x) of F to as in the proof of Lemma 4 (but with Gt replaced by F j
t). Noting

that sup∥u∥,∥x∥≤R h
j(e−tx+

√
1− e−2tu) ≤

√
2Re2βR

2

and that hj is (Re2βR
2

Df,R + e2βR
2

) =

O(e2βR
2

)-Lipschitz on B√
2R, we can apply Lemma 3 to guarantee the existence of u1, . . . , um ∈

BR̃ such that

sup
∥x∥≤R

∣∣∣∣∣F j
t,R(x)−

∥γR,d∥TV

m

m∑
i=1

hj(e−tx+
√
1− e−2tu)

∣∣∣∣∣ ≲ O

(
e2βR

√
d

m

)
.

Lemma 15 guarantees the existence of a neural network Φj
f (x) such that

sup
∥x∥≤R

∣∣∣Φj
f (x)− hj(x)

∣∣∣ ≲ eβR
2

ϵ.

If we define the ReLU network ϕjF,t(x) :=
∥γR,d∥TV

m

∑m
i=1 Φ

j
f (e

−tx +
√
1− e−2tu), then an ap-

plication of the triangle inequality shows that

sup
∥x∥≤R

∣∣∣F j
t,R(x)− ϕjF,t(x)

∣∣∣ = O

(√
d

m
e2βR

2

+ eβR
2

ϵ

)
= O(eβR

2

ϵ),

19

for m = Ω(ϵ−2de2βR
2

). To conclude, we bound the error term EF,R(x) for ∥x∥ ≥ R, as in Lemma
4:

EF,R(x) =

∫
∥u∥>R̃

(e−txj +
√
1− e−2tuj)e

f(e−tx+
√
1−e−2tu)γd(du)

≲
∫
∥u∥>R

(e−tR+
√
1−e−2t|uj |)eβ(∥x∥

2+∥u∥2)

= O

(
eβR

2

(1− 2β)−d/2e−
(1−2β)R2

2

)
.

This gives the result. The path norm bound follows a similar argument to that in Lemma 4 and
uses the path norm bound for the neural network approximant for x 7→ xje

f(x), proved in Lemma
15.

Lemma 6. Let t ∈ [0,∞), and let F j
t and Gt be defined as in Lemma 1. Let ϵ > 0 be small enough

and R > 0 large enough. Then there exists a ReLU neural network ϕjt,F,G such that

sup
∥x∥≤R

∣∣∣∣∣ϕjt,F,G(x)−
F j
t (x)

Gt(x)

∣∣∣∣∣ = O

(
(1 + 2α)d(1− 2β)−d/2e2(α+β)R2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
.

In addition, we have

∥ϕjt,F,G∥path = O
(
(1 + 2α)3d(1− 2β)−3d/2e6(β+α)R2

η(R, ϵ)
)
.

Proof. Throughout this proof let us denote F j
t (x) by F (x), Gt(x) by G(x), and ϕjt,F,G(x) by

ϕF,G(x), since none of the estimates will depend on t or j. Recall from Lemma 5 and Lemma
4 that there exist ReLU neural networks ϕF and ϕG which approximate F and G on the ball of
radius R to error (

eβR
2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
with respect to the uniform norm, and that in addition the networks satisfy ∥ϕF ∥path =

O(e3βR
2

η(R, ϵ)) and ∥ϕG∥path = O(eβR
2

η(R, ϵ)) The proof proceeds in two steps:

1. Show that ϕF

ϕG
approximates F

G on the ball of radius R;

2. Show that ϕF

ϕG
can be approximated by a neural network ϕF,G on the ball of radius R.

Notice that

sup
∥x∥≤R

∣∣∣∣F (x)G(x)
− ϕF (x)

ϕG(x)

∣∣∣∣ ≤ sup
∥x∥≤R

∣∣∣∣ 1

G(x)

∣∣∣∣ · sup
∥x| ≤R

|F (x)− ϕF (x)|

+ sup
∥x∥≤R

∣∣∣∣ ϕF (x)

G(x)ϕG(x)

∣∣∣∣ · sup
∥x∥≤R

|G(x)− ϕG(x)| .

By Lemma 2, we have for ∥x∥ ≤ R that F and G satisfy the bounds

|F (x)| = O
(
(1− 2β)−d/2eβR

2
)
, (1 + 2α)−d/2e−αR2

≤ G(x) ≤ (1− 2β)−d/2eβR
2

,

It follows from the fact that ϕF and ϕG approximate F and G uniformly on BR (and the choice of
R and ϵ) that

ϕG(x) ≥
1

2
(1 + 2α)−d/2e−αR2

,

20

and ϕF is bounded above by O
(
(1− 2β)−d/2eβR

2
)

. It follows that

sup
∥x∥≤R

∣∣∣∣F (x)G(x)
− ϕF (x)

ϕG(x)

∣∣∣∣ ≲ (1 + 2α)d/2eαR
2

sup
∥x| ≤R

|F (x)− ϕF (x)|

+ (1 + 2α)d(1− 2β)−d/2e(2α+β)R2

sup
∥x∥≤R

|G(x)− ϕG(x)|

≲ (1 + 2α)d(1− 2β)−d/2e2(α+β)R2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

)
and this concludes the first step of the proof. To approximate ϕF

ϕG
by a neural network, Lemma 13

states that there exists a neural network ϕquot : R2 → R which satisfies

sup
x∈[−r,r],y∈[a,b]

∣∣∣∣ϕquot(x, y)− x

y

∣∣∣∣ ≲ ϵ,

where the path norm of ϕquot is O(ba−2M), where M = max(r2, b2a−4). We apply this lemma

with r = O
(
(1− 2β)−d/2eβR

2
)

, a = (1 + 2α)−d/2e−αR2

and b = (1 − 2β)−d/2eβR
2

. We
conclude that the network ϕF,G(x) := ϕquot(ϕF (x), ϕG(x)) satisfies

sup
∥x∥≤R

∣∣∣∣ϕF,G(x)−
F (x)

G(x)

∣∣∣∣ ≤ sup
∥x∥≤R

∣∣∣∣ϕF,G(x)−
ϕF (x)

ϕG(x)

∣∣∣∣+ sup
∥x∥≤R

∣∣∣∣ϕF (x)ϕG(x)
− F (x)

G(x)

∣∣∣∣
≲ ϵ+ (1 + 2α)d(1− 2β)−d/2e2(α+β)R2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

)
= O

(
(1 + 2α)d(1− 2β)−d/2e2(α+β)R2

(
ϵ+ (1− 2β)−d/2e−

(1−2β)R2

2

))
To conclude, we note that ∥ϕquot∥path = O

(
(1− 2β)−3d/2(1 + 2α)3de(3β+6α)R2

)
, and hence by

the definition of the path norm,

∥ϕF,G∥path = O
(
(1− 2β)−3d/2(1 + 2α)3de(3β+6α)R2

·max (∥ϕF ∥path, ∥ϕG∥path)
)

= O
(
(1 + 2α)3d(1− 2β)−3d/2e6(β+α)R2

η(R, ϵ)
)
.

We are now in position to prove Proposition 7, which controls the approximation error for the func-
tion F j

t

Gt
in the L2(pt) norm by leveraging the tail decay of pt.

Proposition 7. Let F j
t , Gt be defined as in Lemma 1. Let ϵ > 0 be small enough. Then there exists

a neural network ϕjF,G,t(x) such that, with (st)j = I∥x∥≥R
1

1−e−2t

(
−xj + e−tϕjF,G,t

)
, we have∫

Rd

∥st−∇x log pt(x)∥2pt(x)dx = O

(
max

(
1

(1− e−2t)2
(1 + 2α)2dϵ2(1−c(α,β)),

1

(1− e−2t)3
ϵ1/2

))
,

where c(α, β) := 4(α+β)
(1−2β) . In addition, we have

∥ϕjt,F,G∥path = O
(
(1 + 2α)3dϵ−3c(α,β)η(R0, ϵ)

)
,

where R0 = Θ(
√
d+ log(ϵ−1)).

Proof. Let us again write ϕjF,G,t = ϕF,G, F j
t = F and Gt = G for ease of notation. Let ϕF,G be

the neural network constructed in Lemma 6. Then, for any fixed R, it follows from the definition of

21

st that∫
Rd

∥st −∇x log pt(x)∥2pt(x)dx ≤ 1

(1− e−2t)2

d∑
j=1

sup
x∈BR

|ϕjF,G,t(x)−
F j
t (x)

Gt(x)
|2

+
1

(1− e−2t)2

∫
∥x∥≥R

∥∇x log pt(x)∥2pt(x)dx = I + II.

The first term is approximation error on the bounded domain, and we have

I = O
(
(1 + 2α)2d(1− 2β)−de4(α+β)R2

(
ϵ2 + (1− 2β)−de−(1−2β)R2

))
by Lemma 6. The second term is truncation error, and we have

II ≤ Ept [∥∇x log pt(x)∥4]1/2 ·

(∫
∥x∥≥R

pt(x)dx

)1/2

≲
1

(1− e−2t)2
e−

(1−2β)R2

4 ,

where the bound Ept
[∥∇x log pt(x)∥4]1/2 ≲ 1

(1−e−2t)2 follows from Lemma 21 in Chen et al.
(2023a) and the bound for the second factor follows from the tail decay of pt derived in Lemma
6. To optimize over the cutoff radius R, let us choose R ≥ R0 = Ω(

√
d+ log(ϵ−1)), so that

(1− 2β)−de−(1−2β)R2

= ϵ2. Then it follows that term I satisfies

I = O

(
1

(1− e−2t)2
(1 + 2α)2dϵ2(1−c(α,β))

)
and

II = O

(
1

(1− e−2t)3
ϵ1/2

)
.

This gives the bound as stated in the proposition. The path norm follows by setting R = R0 in the
path norm bound from Lemma 6.

D GENERALIZATION ERROR OF SCORE ESTIMATE

Recall that we are to study the estimation properties of a hypothesis class of the form

NN t
score(L,K) = {x 7→ 1

1− e−2t

(
−x+ e−tϕNN (x)

)
: ϕNN ∈ NN (L,K)},

where NN (L,K) is the class of L-depth ReLU networks from Rd to Rd with path norm bounded
by K. It follows from the definition of the path norm that functions in NN (L,K) are K-Lipschitz
continuous. We also restrict attention to functions in NN (L,K) which satisfy |ϕ(0)| ≤ K. This
mild 1 assumption ensures that the ReLU networks we consider satisfy ∥ϕ(x)∥ ≤ 2K, which we
make frequent use. We will later bound the path norm K in terms of the number of training samples
for some concrete examples. We defined the individual loss function at time t by

ℓt(ϕ, x) = EXt|X0=x

[
∥ϕ(t,Xt)−Ψt(Xt|X0)∥2

]
and the associated population risk

Rt(ϕ) = Ex∼p0
[ℓt(ϕ, x)].

For 0 < S < R, define

ℓtR,S(ϕ, x) = I∥x∥≤SEXt|X0=x

[
∥ϕ(t,Xt)−Ψt(Xt|X0)∥2 · IWR

]
1The assumption that ∥ϕ(0)∥ ≤ K is mild because the network constructed to approximate the score is uni-

formly close to the score function around the origin. Therefore, provided K is large enough, the approximating
network will satisfy ∥ϕ(0)∥ ≤ K anyways.

22

and
ℓtS(ϕ, x) = I∥x∥≤SEXt|X0=x

[
∥ϕ(t,Xt)−Ψt(Xt|X0)∥2

]
,

where WR is the event {supt0≤t≤T ∥Xt∥ ≤ R+ ∥X0∥}. We also define

Rt
R,S(ϕ) = Ex∼p0 [ℓ

t
R,S(ϕ, x)]

and Rt
S(ϕ) = Ex∼p0 [ℓ

t
S(ϕ, x)]. In other words, Rt

R,S is the truncated version of the population risk,
where the expectation is restricted to the event that the process begins in the ball of radius S and
remains in the ball of radius R+ S throughout the relevant time interval. We will use the following
large deviation bound on the OU process from Theorem A.1 in Oko et al. (2023).
Lemma 7. Let Xt denote the OU process. Then there is a universal constant C > 0 such that for
any 0 < S < R,

P (∥Xt∥ ≥ R for some t ∈ [t0, T]|∥X0∥ ≤ S) ≤ T

t0
e−

(R−S)2

2Cd .

The following regularity bounds on the truncated loss function will be used later to prove a general-
ization error estimate.
Lemma 8. Let s1(t, x), s2(t, x) ∈ Fscore and write si(t, x) = 1

1−e−2t (−x+ e−tϕi(x)) for i = 1, 2

and ϕi ∈ FNN . Then for any 0 < S < R and any x ∈ Rd, we have

∣∣ℓtR,S(s1, x)− ℓtR,S(s2, x)
∣∣ = {O(K(R+ S))

(
e−t

1−e−2t

)2
EXt|X0=x∥ϕ1(x)− ϕ2(x)∥, x ∈ BS

0, ∥x∥ > S.

In addition, the truncated loss function is bounded: for any x ∈ Rd and any ϕ ∈ FNN , we have

ℓtR,S(s, x) = O

((
e−t

1− e−2t

)2

K2(R+ S)2

)
.

where s(t, x) = 1
1−e−2t (−x+ e−tϕ(x)).

Proof. Using the definition of ℓtR,S , we have, for any x ∈ Rd,∣∣ℓtR,S(s1, x)− ℓtR,S(s2, x)
∣∣

=

∣∣∣∣∣IBS
(x)

(
e−t

1− e−2t

)2

EXt|X0=x,WR
[∥ϕ1(Xt)−X0∥2 − ∥ϕ2(Xt)−X0∥2]

∣∣∣∣∣
≤ 2(2K(R+ S) + S)IBS

(x)

(
e−t

1− e−2t

)2

EXt|X0=x,WR
∥ϕ1(Xt)− ϕ2(Xt)∥

Note that for the first inequality, we have used that the map x 7→ ∥x∥2 is 2R Lipschitz on BR, and
that supi=1,2, t0≤t≤T ∥ϕi(Xt) −X0∥ ≤ 2K(R + S) + S under the given assumptions. The proof
of boundedness follows similarly: for ϕ ∈ FNN and s = 1

1−e−2t (−x + e−tϕ(x)), we have by the
Cauchy-Schwarz inequality that

∣∣ℓtR,S(s, x)
∣∣ = ∣∣∣∣∣IBS

(x)

(
e−t

1− e−2t

)2

EXt|X0=x[∥ϕ(Xt)−X0∥2 · IWR
]

∣∣∣∣∣
≲ IBS

(x)

(
e−t

1− e−2t

)2 (
K2(R+ S)2 + S2

)
= O

((
e−t

1− e−2t

)2

K2(R+ S)2

)
.

Before proving the main generalization error bound, we need to control the truncation error incurred
from using Rt

R,S in place of Rt.

23

Proposition 8. For any rf < S < R and any s ∈ NN score,t(L,K), we have

∣∣Rt
R,S(s)−Rt(s)

∣∣ = O

((
e−t

1− e−2t

)2

K2

(
(T/t0)

1/2e−
(R−S)2

4Cd + e−
(1−2β)R2

2

))
.

Proof. Let s(x) = 1
1−e−2t (−x+ e−tϕ(x)) with ϕ ∈ NN (L,K). We have

Rt
R,S(s)−Rt(s) =

(
Rt

R,S(s)−Rt
R(s)

)
+ (Rt

R(s)−Rt(s)) = I + II.

For the first term, we have

I =

(
e−t

1− e−2t

)2

Ex∼p0

[
IBS

(x) · EXt|X0=x

[
∥X0 − ϕ(Xt)∥2 · IW c

R

]]
≤
(

e−t

1− e−2t

)2

Ex∼p0

[
IBS

(x) · P(W c
R)

1/2 · E
[
∥X0 − ϕ(Xt)∥4

]1/2]
≲

(
e−t

1− e−2t

)2

· (T/t0)1/2 e−
(R−S)2

4Cd · Ex∼p0

[
IBS

(x)EXt|X0=x

[
∥X0 − ϕ(Xt)∥4

]1/2]
.

To bound the last term, we have

Ex∼p0

[
IBS

(x)EXt|X0=x

[
∥X0 − ϕ(Xt)∥4

]1/2]
≲ Ex∼p0

[
IBS

(x)EXt|X0=x[∥X0∥4 + ∥ϕ(Xt)∥4]1/2
]

≤
(
Ex∼p0

[
IBS

(x)
(
∥x∥4 + EXt|X0=x[∥ϕ(Xt)∥4]

]))1/2
≤
(
Ex∼p0 [∥x∥4 · IBS

(x)] + Ex∼pt [∥ϕ(x)∥4]
)1/2

≲
(
S4 +K4Ex∼pt [∥x∥4]

)1/2
= O(K2).

This proves that

I = O

((
e−t

1− e−2t

)2

· (T/t0)1/2 e−
(R−S)2

4Cd K2

)
.

For term II , we have

II =

(
e−t

1− e−2t

)2 ∫
∥x∥≥S

EXt|X0=x[∥X0 − ϕ(Xt)∥2]p0(x)dx

≲

(
e−t

1− e−2t

)2
(∫

∥x∥≥S

∥x∥2p0(x)dx+

∫
∥x∥≥S

K2∥x∥2pt(x)dx

)

≲

(
e−t

1− e−2t

)2

(2π(1− 2β))−d/2

(∫
∥x∥≥S

∥x∥2e−
(1−2β)∥x∥2

2 +K2

∫
∥x∥≥S

∥x∥2e−
(1−2β)∥x∥2

2 dx

)

≲

(
e−t

1− e−2t

)2

K2e−(1−2β)S2

2 .

where we have used the uniform-in-time sub-Gaussian upper bound on the process density from
Lemma 6. Combining the bounds for terms I and II gives the bound as stated in the lemma.

The following lemma controls the Rademacher complexity of our hypothesis class.
Lemma 9. For t > 0, R > 0, let NN score,t(L,K) be as defined in Section D and let S =
{x1, . . . , xN} be a collection of points in Rd. Then

RadN

(
ℓR,S ◦ NN score,t(L,K),S

)
:= Eϵi∼Ber({±1})

[
sup

s∈NN score,t(L,K)

1

N

N∑
i=1

ϵi · (ℓR,S ◦ s) (xi)

]

≲ 2LdK2(R+ S)2
(

e−t

1− e−2t

)2

· 1√
N
.

24

Proof. We can assume that S ⊆ BS , because ℓR,S(x, s) = 0 for any x /∈ BS and any s. By Lemma 8
and Lemma 11 (a vector version of the contraction inequality for Rademacher complexity), it holds
that

RadN

(
ℓR,S ◦ NN score,t(L,K),S

)
≤

√
2dK(R+S)

(
e−t

1− e−2t

)2

·RadN

(
NN score,t(L,K),S

)
.

Then, since NN score,t(L,K) = {x 7→ 1
1−e−2t (−x+ e−tϕ(x)) : ϕ ∈ NN (L,K)}, it holds by the

scaling and translation properties of Rademacher complexity that

RadN

(
NN score,t(L,K),S

)
≤ EXi

t |Xi
0=xi,WR

e−t

1− e−2t
· RadN (NN (L,K),S≈) ,

where St = {X1
t , . . . , X

N
t } are now random variables. It is well-known(e.g., Lemma 3.13 in Woj-

towytsch et al. (2020a)) that

RadN
(
NN (L,K),St

)
≤ max

i
∥Xt

i∥∞ · 2LK ·
√

2 log(2d+ 2)

N
.

Note that on the event WR, we have maxi ∥Xi
t∥∞ ≤ (R+S). Putting everything together gives the

desired bound.

The following lemma bounds the error between p0 and pt, the forward process at time t, by bounding
the derivative of the the function t 7→ KL(pt ∥ p0). We emphasize that the estimate is only useful
for short times.

Lemma 10. Define Mβ(f) :=
∫
Rd

∥∥∥∇f (x
1−2β

)∥∥∥2 γd(dx). For any t > 0, we have DKL(pt ∥
p0) ≲Mβ(f)t.

Proof. It suffices to prove that the time derivative of the KL divergence satisfies
∂tDKL(pt ∥ p0) ≲Mβ(f). (13)

To prove inequality 13, we differentiate the relative entropy:

∂tDKL(pt ∥ p0) = ∂t

∫
pt(x) log

(
pt
p0

(x)

)
dx

=

∫
∂t (pt) (x) log

(
pt
p0

(x)

)
dx+

∫
pt∂t

(
log

(
pt
p0

(x)

))
dx.

But the second term is equal to zero, because∫
pt∂t

(
log

(
pt
p0

))
dx =

∫
pt ·

∂tpt
pt

dx

=

∫
∂tptdx

= ∂t

(∫
ptdx

)
= 0,

where the last line follows because pt is a probability density function for all t, and hence
∫
ptdx = 1

for all t. Now, recall that pt satisfies the Fokker-Planck equation ∂tpt(x) = ∇ · (xpt(x)) + ∆pt(x)
for t > 0. This means that, with γd(x) as the standard Gaussian density,

∂tDKL(pt ∥ p0) =
∫

(∇ · (pt(x)x) + ∆pt(x)) log

(
pt
p0

(x)

)
dx

=

∫
∇ ·
(
∇ log

(
pt
γd

(x)

)
pt(x)

)
log

(
pt
p0

(x)

)
dx.

Integrating by parts, we have

∂tDKL(pt ∥ p0) =
∫

∇ ·
(
∇ log

(
pt
γd

(x)

)
pt(x)

)
log

(
pt
p0

(x)

)
dx

= −
∫

∇ log

(
pt
γd

(x)

)
· ∇ log

(
pt
p0

(x)

)
pt(x)dx,

25

since the Gaussian tail decay of pt ensures that the boundary term vanishes. Now, note from the
Cauchy-Schwarz inequality that

−
∫

∇ log

(
pt
γd

(x)

)
· ∇ log

(
pt
p0

(x)

)
pt(x)dx

= −
∫ ((

∇ log

(
pt
p0

(x)

)
+∇ log

(
p0
γd

(x)

))
· ∇ log

(
pt
p0

(x)

))
pt(x)dx

≤ −I(pt ∥ p0) +
√
I(pt ∥ p0) ·

(∫ ∥∥∥∥∇ log

(
p0
γd

(x)

)∥∥∥∥2 pt(x)dx
)1/2

,

where

I(pt ∥ p0) :=
∫ ∥∥∥∥∇ log

(
pt
p0

(x)

)∥∥∥∥2 pt(x)dx
is the relative Fisher information of pt with respect to p0. Using the inequality ax − a2 ≤ 1

4x
2 for

a > 0, it follows that

∂tDKL(pt ∥ p0) ≤
1

4

∫ ∥∥∥∥∇ log

(
p0
γd

(x)

)∥∥∥∥2 pt(x)dx.
But recall that p0(x) = 1

Z e
−∥x∥2/2+f(x). Therefore∫ ∥∥∥∥∇ log

(
p0
γd

(x)

)∥∥∥∥2 pt(x)dx =

∫
∥∇f(x)∥2 pt(x)dx

≲
∫ ∥∥∥∥∇f (x

1− 2β

)∥∥∥∥ γd(dx)
:=Mβ(f).

This proves the inequality 10 and hence the original claim as well.

We are now in position to prove the main generalization bound. The following result is the same
content as Proposition 2, but stated more precisely.

Proposition 9. Let Rt denote the population risk functional at time t, let R̂t denote the
associated empirical risk functional, and let Rt

R = Rt
2R,R and R̂t

R = R̂t
2R,R denote

the truncated risk functionals as defined in Section D. Let ŝ denote the minimizer of R̂t
R

over the neural network class NN score,t(L,K). Then, with L = Lf + 5 and K =

O
(
(1 + 2α)3dϵ−3c(α,β)η(

√
d+ log(ϵ−1), ϵ)

)
, we have

Rt(̂s) = O((1 + 2α)2dϵ2(1−c(α,β))),

with probability 1− poly(1/N), provided the number of training samples is

N = Ω
(
22Lf+10d2t−6

0 ϵ−4−8c(α,β)η4 (R0, ϵ)
)
.

We note that, evidenced by Lemma 8, R̂t = R̂t
R with high probability.

Proof. Let s∗ = argmins∈NN score,t(L,K)Rt(s) and s∗R = argmins∈NN score,t(L,K)Rt
R(s). Then we

have

Rt(̂s) =
(
Rt(̂s)−Rt

R(̂s)
)
+
(
Rt

R(̂s)−Rt
R(s

∗
R)
)
+
(
Rt

R(s
∗
R)−Rt(s∗)

)
+Rt(s∗) = I + II + III + IV.

Term I is the truncation error; by Lemma 8, we have

I = O

((
e−t

1− e−2t

)2

K2(T/t0)
1/2e−

R2

4Cd + e
−(1−2β)R2

2

)
.

26

Term II is the generalization error for the truncated risk; by Lemmas 9 and 8 (controlling the
Rademacher complexity of the relevant function class and uniformly bounding the loss ℓR) and
Theorem 26.4 in Shalev-Shwartz and Ben-David (2014), we have

II = O

((
e−t

1− e−2t

)3

· 2LdK2R2 ·
√

1

N
+

(
e−t

1− e−2t

)2

·K2R2 ·
√

2 log(2/δ)

N

)
,

with probability at least 1 − δ. Term III is nonpositive, because Rt
R(·) ≤ Rt(·) for all

R, t > 0, and hence infRt
R(·) ≤ infRt(·). Term IV is the approximation error; by The-

orem 7, it is O
(
(1 + 2α)2dϵ2(1−c(α,β))

)
, where we recall c(α, β) = 4(α+β)

1−2β , provided that

K = O
(
(1 + 2α)3dϵ−3c(α,β)η(R0, ϵ)

)
for R0 = Θ

(√
d+ log(ϵ−1

)
and L = Lf + 5 (recall

that η(R, ϵ) is the path norm of the network needed to approximate f to accuracyRϵ uniformly over
BR).

To balance terms I , II and IV , let us first choose R large enough that term I is the same order as
the approximation error term IV . Due to the exponential decay in R of term I , this holds for R only
logarithmic in all relevant parameters. Let us also take δ to be polynomial in 1/N . It then suffices
to balance N and ϵ so that terms II and IV are of the same order, and up to logarithmic factors this
amounts to solving(

e−t

1− e−2t

)3

·2Lf+5dK2·
√

1

N
= Θ

(
max

(
1

(1− e−2t)2
(1 + 2α)2dϵ2(1−c(α,β)),

1

(1− e−2t)3
ϵ1/2

))
.

Since
(

e−t

1−e−2t

)
= O(t−1) and K = O

(
(1 + 2α)3dϵ−3c(α,β)η(R0, ϵ)

)
, it therefore holds that if

we have

N = Ω

(
max

(
22Lf+10d2t−6

0 (1 + 2α)12dϵ−4η4
(
Rϵ, (1 + 2α)2dϵ2(1−2c(α,β))

)
,

22Lf+10(1 + 2α)12dt−6−72c(α,β)ϵ−4−48c(α,β)η4(R̃ϵ, t
6ϵ4)

)

samples (where Rϵ =

√
d+ 1

1−c log
(

(1+2α)d

ϵt2

)
and R̃ϵ =

√
d− log(t6ϵ4)), our score estimation

error is O(ϵ2).

We now employ existing sampling guarantees to prove that the distribution returned by the SGM is
close to the true data distribution.

Proof of Proposition 3. By Proposition 9 (which controls the score estimation error) and Theorem 1
in Benton et al. (2023) (which controls the sampling error of SGMs in terms of the score estimation
error) we have that

KL(pt0 ∥ p̂) ≲ (1 + 2α)2dϵ2(1−c(α,β)) + κ2dM + κdT + de−2T ,

where [t0, T] is the time interval of the forward process, κ is the maximum step size for the expo-
nential integrator, and M is the number of iterations of the exponential integrator. Choosing M, κ,
and T to scale with ϵ as described in the statement of Prop 3 yields that each term is of order at most
(1 + 2α)2dϵ2(1−c(α,β)), and hence TV (pt0 , p̂) = O((1 + 2α)dϵ1−c(α,β)). It now remains to bound
TV (pt0 , p0), and Lemma 10 shows that

TV (pt0 , p0) ≲Mβ(f)t
1/2
0 .

It follows that if we scale t0 so that the above expression is O((1 + 2α)2dϵ2(1−c(α,β))), then we get
TV (p̂, p0) ≤ TV (p̂, pt0)+TV (pt0 , p0) ≲ (1+ 2α)dϵ1−c(α,β). The number of samples N required
to achieve this error was derived in the proof of Proposition 9.

27

E DISTRIBUTION ESTIMATION AND PROOFS FOR CONCRETE EXAMPLES

We give the proofs of the distribution estimation bounds for the general case and for the concrete
examples discussed. These proofs are quite short and follow easily from the score estimation results.

Proof of Theorem 3. By Proposition 2, we know that with N ≥ Nϵ,t samples, our score estimator
st is O(ϵ)-close to the true score at time t in L2(pt). By Theorem 1 in Benton et al. (2023), the
exponential integrator scheme with parameters as defined in Theorem 3 produces a distribution p̂
which satisfies TV (p̂, pt0) = O(ϵ). All that remains then is to bound TV (p0, pt0). By Lemma 10,
we have under Assumption 1 that TV (pt0 , p0) ≲ Mβt0. It follows that choosing t0 as defined in
Theorem 3 balances TV (p̂, pt0) and TV (pt0 , p0), so that TV (p̂, p0) = O(ϵ).

Proof of Theorem 4. We note that a Barron function f grows linearly with a constant cf ≤ ∥f∥B,
and therefore, for any R > 0, we have for all ∥x∥ ≥ R that |f(x)| ≤ cf∥x∥ = cf

∥x∥
∥x∥2 ≤ cf

R ∥x∥2.
This shows that f satisfies that quadratic growth/decay condition of Assumption 1 with constants
α = β =

cf
R We choose R̃ϵ = Ω(

√
d+ log(t6ϵ4)) to be the optimal cutoff radius for the approx-

imation error argument. In addition, we know (Ma et al., 2020; Klusowski and Barron, 2018) that
for Barron f , there exists a shallow ReLU neural network ϕ such that

sup
∥x∥≤R

|f(x)− ϕ(x)| ≤ Rϵ

and ∥ϕ∥path ≲ ∥f∥B. The result essentially follows from the estimates in Theorem 3 by replacing
α and β with cf

R̃ϵ
and replacing η(R, ϵ) with ∥f∥B; note that in this case c(α, β) ≤ 8cf

R̃ϵ
≤ δ by

assumption.

For the Gaussian mixture example, we first need to show that the log-likelihood has the local ap-
proximation property, which is the content of the following Lemma. The approximating network
has two hidden layers; the inner layer approximates the density and the outer layer approximates
log(x) on the image of the density.

Lemma 11. Suppose that p0(x) = 1
2

(
1
Z1
e
− ∥x−x1∥2

2σ2
min + 1

Z2
e
− ∥x−x2∥2

2σ2
max

)
. Then for any R > 0, there

exists a ReLU network fNN with two hidden layers such that

sup
∥x∥≤R

|f(x)− fNN (x)| ≤ ϵ.

Moreover, fNN satisfies ∥f∥path = O
(
d · σ−1

min ·max∥x∥≤R p
−1
0 (x)

)
.

Proof. By the theory of spectral Barron functions (e.g., Barron (1993) and Klusowski and Barron
(2018)) there exists a shallow ReLU network fmix such that sup∥x∥≤R |fmix(x) − p0(x)| ≤ ϵ and
∥fmix∥path = O(dσ−1

min). We also know from Wojtowytsch et al. (2020b) that x 7→ log(x) can
be locally approximated to error ϵ on [a, b] by a network flog with ∥flog∥path = O(a−1). We set
a = min∥x∥≤R p0(x) and b = max∥x∥≤R p0(x). It is then clear that the network f̃NN = flog ◦fmix

satisfies sup∥x∥≤R | log(p0(x))−f̃NN (x)| ≤ ϵ and ∥f̃NN∥path = O
(
d · σ−1

min·)max∥x∥≤R p
−1
0 (x)

)
.

To conclude, we note that by Lemma 12, the map x 7→ ∥x∥2/2 can be approximated on {∥x∥ ≤ R}
by a network fnorm to accuracy ϵ, and fnorm can be taken to satisfy ∥fnorm∥path = O(dR2). In
turn, the network fNN = ˜fNN + fnorm satisfies

sup
∥x∥≤R

|f(x)− fNN (x)| ≤ ϵ

and ∥fNN∥path = O
(
d · σ−1

min·)max∥x∥≤R p
−1
0 (x)

)
.

We are now equipped to give a simple proof of the distribution estimation result for Gaussian mix-
tures.

28

Proof Of Proposition 5. Suppose

p0(x) =
1

2

(
1

Z1
e
− ∥x−x1∥2

2σ2
min +

1

Z2
e
− ∥x−x2∥2

2σ2
max

)
is a mixture of two Gaussians. Fix some 0 < δ ≪ 1. Then there exists an r0(δ) > 0 (depending on
x1, x2, σmin, σmax) such that

−
(
1 + δ

2σ2
min

)
∥x∥2 ≤ log p0(x) ≤ −

(
1− δ

2σ2
max

)
∥x∥2, ∀ ∥x∥ > r0(δ) (14)

and therefore we can write p0(x) = 1
Z e

−∥x∥2/2+f(x), where f(x) satisfies

−α∥x∥2 := −
(
1 + δ − σ2

min

2σ2
min

)
∥x∥2 ≤ f(x) ≤ β∥x∥2 :=

(
σ2
max + δ − 1

2σ2
max

)
∥x∥2

whenever ∥x| > r0. For δ small enough, the assumption the c(α, β) < 1 holds, for instance,
whenever σ2

min >
2
3 and σ2

max ≤ 1. If ϵ > 0 is small enough that r0(δ) ≤ min
(
Rϵ, R̃ϵ

)
, then the

result then follows from Theorem 3 by using the above values of α and β and using the complexity
measure determined in Lemma 11 in place of η(R, ϵ). In the special case that σ2

min = σ2
max = 1,

we have α = β = δ/2 and c(α, β) ≤ 4δ. In addition, in this case we also have supx≤R̃ϵ
p−4
0 (x) ≲

ed/2t−3ϵ−2.

F BACKGROUND ON NEURAL NETWORKS

F.1 PATH NORMS

Recall that a shallow ReLU neural network is a function ϕ : Rd → Rk whose jth component is
given by

(ϕ)j(x) =

m∑
i=1

aij(w
T
i x+ bi)

(+), wi ∈ Rd, aij , bi ∈ R, 1 ≤ j ≤ k,

and a deep ReLU neural network is a composition of shallow ReLU networks. For scalar valued
networks, we define the path norm by

∥ϕ∥path = inf

m∑
i=1

|ai| (∥wi∥1 + |bi|) ,

where the infimum is taken over all choices of parameters (ai, wi, bi) such that ϕ(x) =∑m
i=1 ai(w

T
i x+ bi)

(+). We extend the path norm to vector-valued shallow networks by

∥ϕ∥path = max
1≤j≤k

∥(ϕ)j∥path, ϕ : Rd → Rk

and to deep networks by

∥ϕ∥path = inf
ϕ1,...ϕL

∥ϕ1∥path · · · · · ∥ϕL∥path,

where the infimum is over all representations of ϕ as a composition of shallow networks. A more
thorough study of path norms can be found in Wojtowytsch et al. (2020a).

The path norm captures how large the weights are in an average (i.e., ℓ1) sense. Intuitively, a network
with a large path norm is not likely to generalize well to unseen data, because its pointwise values
depend on large cancellations. In contrast, networks with small path norm provably generalize well,
in the sense of Rademacher complexity. The following result due to Wojtowytsch et al. (2020a)
makes this precise.
Proposition 10. Let NNL,K denote the set of L-layer ReLU networks whose path norm is bounded
by K. Let S = {x1, . . . xN} denote a set of points in Rd. Then the empirical Rademacher com-
plexity of NNL,K is bounded by

Rad(NNL,K , S) := Eϵi∼Ber({±1}) sup
f∈NNL,K

1

N

N∑
i=1

ϵif(xi) ≤ max
i

∥xi∥∞ · 2L
√

2 log(2d+ 2)

N
.

29

F.2 APPROXIMATION OF HELPER FUNCTIONS

We will need to approximate some simple functions by shallow ReLU neural networks; the next
result shows that we can do this efficiently (in the sense of path norms). We emphasize that these
results are known (e.g., in Wojtowytsch et al. (2020b)), but we provide the full proofs for the sake
of completeness.
Lemma 12. Let ϵ > 0, R > 0, and −∞ < a < b <∞.

1. There exists a shallow ReLU neural network ϕexp : R → R with O(ϵ−2e2b) neurons such
that supx∈[a,b] |ϕexp(x)− ex| = O(ϵ). In addition, ϕexp satisfies ∥ϕexp∥path = O(eb).

2. There exists a shallow ReLU neural network ϕprod : R2 → R withO(ϵ−2R4) neurons such
that

sup
(x,y)∈[−R,R]2

|ϕprod(x, y)− xy| = O(ϵ).

In addition, ϕprod satisfies ∥ϕprod∥path = O(R2).

3. If a > 0, then exists a shallow neural ϕinv : R → R with O(ϵ−2b2a−4) parameters, such
that

sup
x∈[a,b]

|ϕinv(x)− (1/x)| = O(ϵ).

In addition, ϕinv satisfies ∥ϕinv∥path = O(ba−2).

Proof. For 1), note that for any x ∈ [a, b], we have

ex + ea(x− a+ 1) =

∫ x

a

(x− t)etdt

=

∫ b

a

(x− t)+µexpdt,

where µexpdt = etdt (note that ∥µexp∥TV ≤ eb. We apply Lemma 3 with the function g(x, t) =
(x − t)+. The Lipschitz constant is bounded at 1 (since ReLU is 1-Lipschitz) and the function
values of g over (a, b) are bounded at 2b. We conclude that there exist t1, . . . , tm ∈ [a, b] such that
the function ϕexp(x) :=

∥µexp∥TV

m

∑m
i=1(x− ti)

+ satisfies

sup
x∈[a,b]

|ex + ea(x− a+ 1)− ϕexp(x)| ≲
2beb√
m

max(b,−a)
√
log(mb) = O

(
eb√
m

)
.

If we set m = O(ϵ−2e2b), then the approximation error is O(ϵ) We note that ϕexp(x) − (ea(x −
a + 1)) is also a ReLU network, so that (upon renaming ϕexp) we have obtained a neural network
approximation to ex on [a, b]. Finally, up to an O(1) summand, we have

∥ϕexp∥path =
eb − ea

m

m∑
i=1

|ti| ≤ max(b,−a)(eb − ea) = O(eb).

For 2), first observe that we can approximate the one-dimensional map x 7→ x2 by a shallow ReLU
neural network ϕsq(x) on [−2R, 2R] with O(ϵ−2R2) neurons. Indeed, for x ∈ [−R,R], we can
write

x2 =

∫ x

0

2(x− t)dt =

∫ 2R

0

2(x− t)+dt.

Using Lemma 3 (in a similar fashion to part 1) above), we conclude the existence of such an approx-
imating ϕsq(x) = 4R

m

∑m
i=1(x− ti)

(+). The path seminorm of ϕsq can be bounded by O(R) using
the same argument as in part 1). It follows that xy = 1

4 ((x+ y)2 − (x− y)2) can be approximated
by ϕprod(x, y) := 1

4 (ϕsq(x + y) − ϕsq(x − y)) on [−R,R]2. The number of neurons (and path
norm constant) of ϕprod is bounded by the number of neurons (and path norm constant) of ϕsq , up
to a constant multiple.

30

For 3), the idea is very similar, so we omit some of the details: if x ∈ [a, b] with a > 0, then we
have

1

x
− 2

a
+

1

a2
x =

∫ b

a

(x− t)+
2

t3
dt.

The conclusion then follows from another application of Lemma 3, noting that the total variation of
the parameter measure above is

∫ b

a
2
t3 = O(a−2).

As a consequence of Lemma 12, we can approximate the map (x, y) 7→ x
y by a neural network,

provided that the domain of the second coordinate is bounded away from 0.

Lemma 13. Let ϵ > 0, R > 0, and 0 < a < b < ∞. Let M = max(R, b
a2). Then there exists a

ReLU neural network ϕquot with 2 layers and O(a−4ϵ−4R4M2) parameters such that

sup
x∈[−R,R],y∈[a,b]

∣∣∣∣ϕquot(x, y)− x

y

∣∣∣∣ = O(ϵ).

Moreover, we have ∥ϕquot∥path = O(M2ba−2).

Proof. Let ϵ̄ = (R+1)−1ϵ. By Lemma 12, we can find shallow neural networks ϕ and ψ satisfying

sup
y∈[a,b]

∣∣∣∣ϕ(y)− 1

y

∣∣∣∣ ≤ ϵ̄

and
sup

(x,y)∈[−M,M]

|ψ(x, y)− xy| ≤ ϵ̄.

Let ϕquot(x, y) = ψ(x, ϕ(y)). Then

sup
x∈[−R,R],y∈[a,b]

∣∣∣∣ϕquot(x, y)− x

y

∣∣∣∣ ≤ sup
x∈[−R,R],y∈[a,b]

∣∣∣∣xy − xϕ(y)

∣∣∣∣
+ sup

x∈[−R,R],y∈[a,b]

|xϕ(y)− Φ(x, y)|.

For the first term, we have

sup
x∈[−R,R],y∈[a,b]

∣∣∣∣xy − xϕ(y)

∣∣∣∣ ≤ R sup
y∈[a,b]

∣∣∣∣1y − ϕ(y)

∣∣∣∣ ≤ Rϵ̄.

For the second term, note that an inspection of the proof of Lemma 12 shows that ϕ is O(a−2)-
Lipschitz, so that, up to a constant factor, we have

ϕ([a, b]) ⊆
[
ϕ(0)− b

a2
, ϕ(0) +

b

a2

]
.

This guarantees that

sup
x∈[−R,R],y∈[a,b]

|xϕ(y)− Φ(x, y)| := sup
x∈[−R,R],y∈[a,b]

|xϕ(y)− ψ(x, ϕ(y))|

≤ sup
x∈[−R,R],y∈[ϕ(0)− b

a2 ,ϕ(0)+ b
a2]

|xz − ψ(x, z)|

≤ sup
(x,y)∈[−M,M]2

|xz − ψ(xz)| ≤ ϵ̄.

This proves that

sup
x∈[−R,R],y∈[a,b]

∣∣∣∣ϕquot(x, y)− x

y

∣∣∣∣ ≤ (R+ 1)ϵ̄ = ϵ.

To conclude, we have that ∥ϕquot∥path ≤ ∥ψ∥path · ∥ϕ∥path = O(ba2M2).

31

Lemma 14. Let f satisfy Assumption 2 . Then for any R > max(rf ,
√

1
β sup∥x∥≤rf

|f(x)|) and

ϵ > 0, there exists a ReLU neural network ϕf,exp with (Lf + 1) layers such that

sup
∥x∥≤R

|ϕf,exp(x)− f(x)| ≲ eβR
2

ϵ.

In addition, ϕf,exp satisfies ∥ϕf,exp∥path = O(eβR
2 · η(R, ϵ)).

Proof. By Assumption 2, there exists an Lf -layer ReLU neural network ϕf with

sup
∥x∥≤R

|f(x)− ϕf (x)| ≤ ϵ.

By Lemma 2, there exists a shallow neural network ϕexp : R → R such that

sup
z∈[−αR2,βR2]

|ϕexp(x)− ex| ≲ ϵ

and ∥ϕexp∥path = O(eβR
2

). In turn, the (Lf + 1)-layer ReLU network ϕf,exp = ϕexp ◦ ϕf satisfies

sup
∥x∥≤R

|ϕf,exp(x)− ef(x)| ≤ sup
∥x∥≤R

|ϕf,exp(x)− (ϕexp ◦ f)(x)|+ sup
∥x∥≤R

|(ϕexp ◦ f)(x)− ef(x)|

≲ eβR
2

sup
∥x∥≤R

|ϕf (x)− f(x)|+ sup
z∈[−α∥x∥2,β∥x∥2]

|ϕexp(z)− ez|

≲ eβR
2

ϵ.

In addition, it follows that

∥ϕf,exp∥path ≤ ∥ϕexp∥path · ∥ϕexp∥path ≲ eβR
2

· η(R, ϵ).

Lemma 15. Let f satisfy Assumption 2. Then for any R > max(rf ,
√

1
β sup∥x∥≤rf

|f(x)|) and

ϵ > 0, there exists a ReLU neural network Φj
f (x) such that

sup
∥x∥≤R

∣∣∣Φj
f (x)− xje

f(x)
∣∣∣ ≲ eβR

2

ϵ.

In addition, we have ∥Φj
f∥path = O(e3βR

2 · η(R, ϵ)).

Proof. Let ϕf,exp denote the ReLU network constructed in Lemma 14, so that
sup∥x∥≤R |ϕf,exp(x) − ef(x)| ≲ eβR

2

ϵ and ∥ϕf,exp∥path ≲ eβR
2 · η(R, ϵ). This also implies

that sup∥x∥≤R |ϕf,exp(x)| ≤ CeβR
2

for a universal constant C ≥ 1. By Lemma 12, there exists a
shallow ReLU neural network ϕprod : R2 → R such that

sup
|y|≤R,|z|≤CeβR2

|ϕprod(y, z)− yz| ≲ ϵ

and ∥ϕprod∥path = O(e2βR
2

). In turn, the (Lf + 2)-layer ReLU network Φj
f (x) =

ϕprod(xj , ϕf,exp(x)) satisfies ∥Φj
f∥path ≲ e2βR

2 · ∥ϕf,exp∥path ≲ e3βR
2 · η(R, ϵ) and

sup
∥x∥≤R

|Φj
f (x)− xje

f(x)| ≤ sup
∥x∥≤R

|Φj
f (x)− xjϕf,exp(x)|+ sup

∥x∥≤R

|xjϕf,exp(x)− xje
f(x)|

≤ sup
|y|≤R,|z|≤CeβR2

|ϕprod(y, z)− yz|+R sup
∥x∥≤R

|ϕf,exp(x)− ef(x)∥

≲ ϵ+ReβR
2

ϵ ≲ eβR
2

ϵ.

32

F.3 CONTRACTION INEQUALITY FOR VECTOR-VALUED FUNCTIONS

We present the contraction inequality for vector valued functions, which is a slight modification of
Theorem 3 in Maurer (2016). The proof of this result can be found in the aforementioned paper.
Proposition 11. Let F be a separable class of functions from Rd to Rd, let {x1, . . . , xN} ⊂ BS

and let Ψ : F × Rd → R satisfy

Ψ(f, x)−Ψ(f ′, x) ≤ LEXt|X0=Xi
∥f(Xt)− f ′(Xt)∥, ∀f, f ′ ∈ F , x ∈ Rd.

Then it holds that

Eϵi sup
f∈F

N∑
i=1

ϵiΨ(f, xi) ≤
√
2LEXi

t |Xi
0=xi

Eϵ sup
f∈F

∑
i,k

ϵikfk(X
i
t),

where {ϵik}1≤i≤N,1≤k≤d are independent Rademacher random variables and fk denotes the k-th
component of f .

33

	 Appendix
	Properties of the score function and process density
	High-level proof sketch
	Proof overview of approximation error bound
	Proof overview of generalization
	Proof overview of distribution estimation

	Proofs for approximation
	Generalization error of score estimate
	Distribution estimation and proofs for concrete examples
	Background on neural networks
	Path norms
	Approximation of helper functions
	Contraction inequality for vector-valued functions

