Published as a conference paper at ICLR 2024

A IDENTIFIABILITY OF STOCHASTIC DIFFERENTIAL EQUATIONS

A.1 DEFINITIONS AND ASSUMPTIONS

In this part, we will introduce some basic definitions and assumptions required for the theory.

First, let us restate assumption

Assumption 1 (Global Lipschitz). We assume that the drift and diffusion functions in eq. () satisfy
the global Lipschitz constraints. Namely, we have

|fo(x) — fo(y)| + go(x) — go(y)| < Clz — y| (6)

for some constant C, x,y € RP and | - | is the corresponding Lo norm for vector-valued functions
and matrix norm for matrix-valued functions.

This assumption regularizes the It6 diffusion to have a unique strong solution X, to eq. (3), which is
a standard assumption in the SDE literature. In addition, this diffusion satisfies the Feller continuous
property, and its solution is a Feller process (Lemma 8.1.4 in|/@ksendal & @ksendal (2003)).

Definition 1 (Feller process and semi-group). A continuous time-homogeneous Markov family X
is a Feller process when, for all x € RP, we have Vt,y — = = Xy,ti>Xm7t andt — 0 =

Xzt 2y where i>, 2y means convergence in distribution and in probability, respectively, and X ¢
means the solution with y as the initial condition. A semigroup of linear, positive, conservative
contraction operators Ty is a Feller semigroup if. for every f € Cy,z € RP, we have T, f € Cy
and lim;_,o Ty f(x) = f(x), where Cy is the space of continuous functions vanishing at infinity.

Basically, the transition operator of a Feller process is a Feller semigroup. The reason we care
about the Feller process is its nice properties related to its infinitesimal generators. In a nutshell, the
distributional properties of the Feller process can be uniquely characterised by its generators.

Definition 2 (Infinitesimal generator). For a Feller process X; with a Feller semigroup Ty, we
define the generator A by

Af=1lim

T, f —
i # forany f € D(A) a7

where D(A) is the domain of the generator, defined as the function space where the above limit
exists.

Next, let us restate assumption

Assumption 2 (Diagonal diffusion). We assume that the diffusion function gy outputs a non-zero
diagonal matrix. That is, it can be simplified to a vector-valued function go(X;) : RP — RP.

This is a key assumption for structure identifiability. For a general matrix diffusion function, it is
easy to come up with unidentifiable examples (see Example 5.5 in (Hansen & Sokol| 2014)). For
example, in a driftless process, the distribution of X; will depend on gggg?, where it can have
multiple factorizations that correspond to different graphs.

A.2 STRUCTURE IDENTIFIABILITY FOR OBSERVATIONAL PROCESS

Now, let us re-state theorem 4.1}

Theorem 4.1 (Structure identifiability of the observational process). Given e (16), let us define
another process with X;, G # G, fa, §a and W. Then, underAssumptzons and with the same
initial condition X (0) = X (0) = x, the solutions X, and X, will have different distributions.

To prove this theorem, we begin by establishing the corresponding result for the discretized Euler
SEMs, and then build the connection to the It6 diffusion through the infinitesimal generator.

Lemma A.1 (Identifiability of Euler SEM). Assuming assumption[2|is satisfied with nonzero diag-
onal diffusion functions. For a Euler SEM defined as

XA, = X2+ fo(XP)A +g6(XP)me, me ~ N(0,A), (18)

14

Published as a conference paper at ICLR 2024

if we have another Euler SEM defined as
X = X0+ fa(XP)A+ga(XP)i, 7~ N(0,AI). (19)

Then their corresponding transition density p(X{11| X = a) = p(X3,|XP = a) forall a €
R iff. G = G, fa = fc and |g9c| = |gc/|-

the same since they define the same Euler SEM update equations (up to the sign of the diffusion
term) with given initial conditions.

On the other hand, we know

(XX =a) = N(fola)A+a,g6°(a)A)

PXEIXP =a) = N(fg(a)A + a,gi(a)A)
Thus, if two conditional distributions match, we have

fa(a)A = fa(a)A gc*(a)A = gg(a)A (20)

Since A > 0, we have fa(a) = fs(a), go*(a) = g%(a) for all @ € RP. From the diagonal
diffusion assumption, we know |gg(a)| = |ga(a)l.
Now, assume for contradiction that G # G; then there exists XtA)i — Xﬁrl)j in G but not in
G. Then we have by definition that ofi(X1.G) = 0 and 95, (X1.G) = 0 for all XtA, and also

IXP, X,
] A) A . A
MZ’G) % 0 or 99;(X; .G) = 0 for some XtA. In the former case, if W # 0 but

3Xt.'i aXtA,L t,i
. A . . —
af”(,()i((g’g) = 0 for some X/, we have a contradiction to fg(a) = faz(a) fora € RP. A
ti _ _
similar analysis can be done in the latter case for g¢, g5. Thus, we have G = G, fg = f¢ and
lgc| = |ga|- O

Next, we will prove a lemma that builds a bridge between the generator of the 1t6 diffusion and its
corresponding Euler SEM.

Lemma A.2 (Generator characterises Euler SEM). Assume that assumptions[Iland[2] For an 116 dif-
fuszon defined as eq. (16), we denote its corresponding variables in Euler SEM with A discretization
as X2, Similarly, lfwe have an alternative It6 diffusion defined with fc;, g and G, ae define the
correspondmg Euler SEM variables X . Then, the generators of the Ito diffusions A = A iff. their
Euler SEM variables have the same dzstrlbutlon with given initial conditions.

Proof. First, assume A = A, then for any h € Cg (twice continuously differentiable functions
vanishing at infinity), we can define the generator for It6 diffusion as

Zfd

Similarly, we can define A. From Lemma A3 (Hansen & Sokol| 2014), we know if A = A, then
G =G, f(-,G) = f(-,G) and g*(-,G) = g*(-,G) for x € R”. Therefore, by the definition of
Euler SEM (eq. .) it is trivial that they define the same transition density p(X2 11 | XA =a) =

H1|Xt =a)fora € RP.

h(;c) 21
F)

On the other hand, if the two Euler SEMs define the same transition densmes then from Lemma
| we have f = fa, |9c| = |gc| and G = G. Then from eq. (21), A = O

Finally, the following lemma shows why we care about the infinitesimal generator for the Feller
process.

Lemma A.3 (Generator uniquely determines Feller semigroup). Let us define the Feller semlgroup
transition operator Ty and T, associated with generator A, A. Then, Ty = Ty iff. A =

15

Published as a conference paper at ICLR 2024

Proof. We define the resolvent of a Feller process with A > 0 as:

Ryf = /00 exp(—At) T, fdt (22)
0

with f € Cy. This is the Laplace transform of T f. From |@ksendal & @ksendal| (2003), we know
Ry = (M — A)~!. Therefore, if A = A, then for A > 0, the resolvent Ry = (Al — A)™! =
(M — A)_1 = R,. Therefore, for all h € Cj, they define the same Laplace transform of T h.
From the uniqueness of Laplace transform, we have T; = T.

Similarly, if T, = T,, we have R) = R, from the definition of resolvent. Thus, A = \I — R;\l =
M- R'=A. O

Now, we can prove theorem4.1]

Proof. Suppose we have two different observation process defined with G # G. Then, from Lemma
with any A > 0, their Euler transition distribution p(X 73| X = a) # p(X3,| X = a).
Thus, from Lemma these two Itd diffusions have different generators A # A. From assumption
the solutions of these two Itd diffusions are Feller processes. From Lemmal[A.3] if A # A, their
semigroup Ty # T, which results in different observation distributions of X, X;. L]

A.3 IDENTIFIABILITY OF LATENT SDE

We begin by re-stating theorem 4.2}

Theorem 4.2 (Structural identifiability with latent formulation). Consider the distributions p, p de-
fined by the latent model in eq. (3) with (G, Z, X, fc.9¢), (G, Z,X, fa,Ga) respectively, where
G # G. Further, let t, ...t be the observation times. Then, under Assumptionsand '

I iftigs —ti = Aforalli € 1,..,1 — 1, then p®(Xy,,..., Xs,) # p™(Xey, -, Xt,),
where p™ is the density generated by the Euler discretized eq. (9) for Z;;

2. if we have a fixed time range [0,T], then the path probability p(Xy,,..., X)) #
(X4, .., Xy,) under the limit of infinite data (I — o).

We follow the same proof strategy as|Hasan et al.| (2021); |Khemakhem et al.[(2020).

Proof. Let’s assume p(Xy,,..., X¢,) = p(Xy,, ..., Xy,) even though G # G. Then, for any ¢,
and t;, we have p(X;, ., X;,) = p(X4,,,, Xt,)- Then, we can write

it1) i1

p(Xt71+1aXt71) = /p(Zt1+17Zthtq‘,+1aXt7‘,)dZt1:+1dZti

= /pZ(ZtH—l? Zti)pE(Xti+1 - Zti+1)p6(Xti - Zti)dZtH—leti

= [(pG X pe) *pz] (Xti+17Xti)

where p. is the noise density for the added observational noise €, p, is the joint density defined by
latent It6 diffusion and * is the convolution operator. Thus, by applying the Fourier transform F, we
obtain

F(pe x pe)(w) x F(p:)(w) = F(pe x pe)(w) x F(p2)(w) (23)
So F(p.) = F(p.). Then, by inverse Fourier transform, we have p.(Z,, ., Z¢,) = p.(Zy,,,, Zy,).

If the above distributions are obtained by discretizing the It6 diffusion with a fixed step size A,
they become the corresponding discretized distribution p~ (Z2 ZtAi) (i.e. defined by Euler SEM).

tit1?

Then the transition density p® (Z7 | |Z{) = p™(ZE || ZE). From Lemma we have G = G,

i+1 i+1

resulting in a contradiction. Thus, p® (X4, ..., X¢,) # 0> (X4, , .., X¢,).

If we have a fixed time range [0,7], then, when we have infinite observations I —
oo, the observation time t follows an independent temporal point process with intensity
limg_,o Pr(observe in [t,¢ + dt]|H,) > 0 where H, is the filtration. Thus, for arbitrary time in-
terval A > 0, we have p(Ziya, Zt) = p(Zi4n, Z:). Since this holds for arbitrarily small A > 0,

16

Published as a conference paper at ICLR 2024

this equality in densities means they define the same transition density p(Z;+a|Z:) = p(Zi+a|Z:)
as A — 0. By definition of the Feller transition semigroup, we have T; = T;. From Lemma
A=AadG = G (Lemma . This leads to contradiction, meaning that
p(th,...,XtI)#ﬁ(th,...,XtI)whenI%oo. O]

A.4 RECOVERY OF THE GROUND TRUTH GRAPH

Before diving into the proof of theorem[4.3] we introduce some necessary assumptions:

Assumption 3 (Correctly specified model). We say a model is correctly specified w.r.t. the ground
truth data generating mechanism iff. there exists a model parameter such that the model coincides
with the generating mechanism.

Assumption 4 (Expressive posterior process). For a given prior parameter 0, we say the approxi-
mate posterior process (eq.) is expressive enough if there exists a measurable function u(Z;)
such that (i) gc(Z)u(Z,) = fa(Zi) — he(Z,t, G); (ii) u(Z,) satisfies Novikov’s condition and
(iii) we define

1 /T T
My = exp (—2/ |u(Zt)‘2dt — / u(Zt)Tth> 24)
0 0

and for given latent states Z,, . .., Z;, and corresponding observations X, ,..., X, with 0 <
t1 <ty < ... <ty <T, My can approximate the following arbitrarily well:

T~
(X, ..., Zy, |G)

(25)

This assumption is to make sure the approximate posterior process is expressive enough to make the
variational bound tight. Since we use neural networks to define the drift and diffusion functions, the
corresponding approximate posterior is flexible. In fact, Tzen & Raginsky| (2019b)) showed that the
diffusion defined by eq. (I2) can be used to obtain samples from any distributions whose Radon-
Nikodym derivative w.r.t. standard Gaussian measure can be represented by neural networks. Due
to the universal approximation theorem for neural networks (Hornik et al.| [1989), the corresponding
posterior is indeed flexible.

First, we can re-write the ELBO (eq.) (for a single time series) as the following:

I

> logp(X,,

i=1

- 1 [T -

z)-3 | |u<zt>|2dtH ~ Dt [4s(G) [p(G)]
(26)

where P is the probability measure in the filtered probability space (X, F, {F }o<i<7, P), and Z;

is the path sampled from the approximate posterior process (eq. (IZ)). Let’s restate the theorem:

logp(thv ceey th) > EG~q¢(G) [EP

Theorem 4.3 (Consistency of variational formulation). Suppose Assumptions are satisfied for
the latent formulation (eq. (3)). Then, for a fixed observation time range [0,T), as the number of
observations I — oo, when ELBO (eq. (13) is maximised, q,(G) = 6(G*), where G* is the ground
truth graph, and the latent formulation recovers the underlying ground truth mechanism.

Proof. First, we want to show that the term inside the Eg., ¢(g)['] represents the
1ng(Xt1a-~-7Xt1|G)-

We define a measurable function w(Z;) that satisfies Novikov’s condition. From the Girsanov the-
orem, we can construct another process

AW = w(Z,)dt + dW; (27)

and another probability measure @ s.t. W is a Brownian motion under measure Q with

dQ 17) g T
P exp (2/0 |u(Zy)|*dt 7/0 w(Z;)" dW, (28)

17

Published as a conference paper at ICLR 2024

where P is the probability measure associated with the original Brownian motion W;. From Boué
& Dupuis|(1998); [Tzen & Raginsky|(2019a), we have the following variational formulation:

I I
log Ep lH p(Xy, > logp(Xy, } (29)

=1 i=1
where P represents the set of probability measures for the path Z;. Assume measure () is constructed
by u, we can write down Dk1,[Q|| P] by substituting eq. (28):

ZtmG)

ZtmG)

= sup {DKL[QP] +Eq
QeP

Diw[Q]1P) = Eqllog 2]

-/ H / " fu(z0) Pt - / ' u(zt>Tth] 1Q
:/ [_;/OT |u(Zt)|2dt+/0T |u(zt)|2dt] dQ
_Eq [; /OT |u(zt)|2dt].

The third equality can be obtained by manipulating eq. (27):
w(Z)T AW, = |u(Z,)2dt + w(Z,) T dW,

T ~ T T
/ uldW, | =Eq / |u|?dt / ul dW,
0 0 0
=0
The highlighted term is 0 due to the martingale property under measure (). Thus, we have

T T
Eq l / quWt] = -Eq / |u|2dt] (30)
0 0

w(Zy) = gc(Z) ' [£o(Z:, G) — ho(Zi,t,G)] 31

Note that this is different to the original w (eq. (I4)) by a minus sign. But this does not affect the
derivation because we care about u?2. By simple manipulation of eq. , we have

hg(Zi,t,G)dt + ga(Z;)dW; = fo(Z,)dt + ga(Z;)dW; (32)

= Eq +Eq

Now, let’s define

This means the prior process (eq. (9)) under probability measure @ is equivalent to the posterior
process (eq. (I2))) under probability measure P. Next, we can change the probability measure of

eq. (29):

I 1 (T
sup {]EQ lz log p(Xy,|Zy,, G) — 5/0 |U(Zt)|2dt1 }

QeP i=1
1

I T
= sup {EP [Z 1ng(Xti‘Ztm G) - 5/ |u(Zt)|2dt] }
w i=1 0

where the second equality is obtained since % is fully determined by function u, and Z, is ob-
tained from the posterior process eq. . This equation is exactly the term inside Eg.q(c)[-] since

9c(Z)2[fa(Zi) — he(Zi,t, G))? = ga(Z) 2lhg(Z1,t, G) — fa(Zy)]?.
From Proposition 2.4.2 in (Dupuis & Ellis| [2011)), the supremum is uniquely obtained at

dQx _ Tlio p(X4| 21, G)
ap]EP[Hle p(Xti

Zti7G)]

18

Published as a conference paper at ICLR 2024

From assumption] the measure () induced by u can approximate the above arbitrarily well. Thus,
the eq. can be written as:

sup ELBO = sup [logp(Xy,, ..., X, |G)] — Dki[e(G)|p(G)]
q(G),0,¢ (@)

We divide the ELBO by +, and let I — oo, we have

Jim 7 llogp(Xe,,.., Xo,|G)] — 1 K LIa(G) (G

1

= lim — [logp(Xt17"'aXtI|G)]
I—oo [
1

< lim *1ng(Xt1a"'7XtI;G*)
I—oo I

where the first equality is obtained by the fact Dk1,[¢(G)||p(G)] < oo, and the second inequality is
due to the property of the ground truth likelihood. From the identifiability theorem[d.2] the equality is
uniquely obtained at ¢(G) = §(G*), and the learned system recovers the true generating mechanism
under infinite data limits. O

B MODEL ARCHITECTURE
In this section, we describe the model architecture details used in our experiments for SCOTCH.

Prior Drift Function and Diffusion Function As described in Section [3] following [Geffner et al.
(2022)), we use the following design for the prior drift function fg 4(Z;) and diffusion function
9c,a(Zy):

D
fa.a(Z) =¢ <Z Gial(Zii, e), ed> (33)
=1

where ¢ : RPsxDe s RD 1. RP*De 5 RDs gre neural networks, and e;, € RP- is a trainable
node embedding for the i node. The use of node embeddings means that we only need to train two
neural networks, regardless of the latent dimensionality D.

We implement both the prior drift and diffusion function using D, = D, = 32, and as neural
networks with two hidden layers of size max(2 * D, D.) with residual connections.

Posterior Drift Function In Section we described the posterior SDE dZt(”) =
hy(Z G, X™)dt + ga(Z™)dW,, with posterior drift function by (Z™,t; G, X ™). We
now elaborate on how this is implemented.

We design an encoder K, (¢, G, X), that takes as input the time ¢, a graph G and time series
X = {X,,,...X,}, and outputs a context vector ¢ € RP¢. This encoder consists of a GRU (Cho
et al.| 2014) that takes as input all future observations (i.e. Xy, s.t. {; > ¢) in reverse order; and a
single linear layer which takes the input (i) the hidden state of the GRU, and (ii) the flattend graph
matrix GG, and output the context vector c¢. Note that the GRU only takes as input future observations
as the future evolution of the latent state is conditionally independent of past observations given the
current latent state. We implement the GRU with hidden size 128, and choose D, = 64 for the size
of the context vector.

Then, the posterior drift function hw(Zt(”), t; G, X (™) is implemented as a neural network that

takes as input Zt(") and the context vector ¢ computed by the encoder, and outputs a vector of
dimension D. This neural network is a MLP with 1 hidden layer of size 128.

Posterior Mean and Covariance In Section we also have posterior mean and covariance
functions g, (G, X (™) : {0,1}P*P xRP — RP and (G, X™) : {0,1}P*P xRP — RP*P
for the initial state. We reuse the encoder K (¢, G, X) with ¢t = 0 to encode the entire time series
and graph, and then implement g4, 33, as a linear transformation of the context vector (i.e. a single
linear layer).

19

Published as a conference paper at ICLR 2024

Posterior Graph Distribution In Section we introduced a variational approximation ¢4(G)

to the true posterior p(G| X, ..., X(M)). To implement this, we use a product of independent
Bernoulli distributions for each edge. That is, we have:

46(G) =[] o5 (1 — ¢3;) 1 =G (34)
1,3

where ¢;; € [0,1] are learnable parameters corresponding to the probability of edge i — j being
present.

Observational Likelihood We choose the observational noise p., in the model to follow a stan-
dard Laplace distribution with location ¢ = 0 and scale b = 0.01.

C BASELINES

We use the following baselines for all our experiments to evaluate the performance of SCOTCH.

* PCMCI+:Runge| (2018; 2020) proposed a constraint-based causal discovery methods for
time series, which leverage the momentary conditional independence test to simultane-
ously detect the lagged parents and instantaneous effects. This is an improvement over its
predecessor called PCMCI, which cannot handle instantaneous effects. In our experiments,
we use PCMCI for Netsim and PCMCI+ for the other datasets. We use the opensourced
implementation Tigramite (https://github.com/jakobrunge/tigramite).

* VARLiNGaM: Hyvirinen et al|(2010) proposed a linear vector auto-regressive model to
learn from time series observations. It is an extension of LiNGaM (Shimizu et al., 2006),
where its structural identifiability is guaranteed through the non-Gaussian noise assump-
tion. The major limitation is its linear and discrete nature, which cannot model com-
plex interactions and continuous systems. We also use the opensourced LiNGaM package
(https://lingam.readthedocs.io/en/latest/tutorial/var.html)

* CUTS: CUTS (Cheng et al., 2023)) is based on Granger causality, and designed for inferring
structures from irregularly sampled time series. It treats the irregular samples as a missing
data imputation problem. It is capable of imputing missing observations and inferring the
graph at the same time. However, it only supports single time series. We use the authors’
opensourced code (https://github.com/jarrycyx/unn).

* Rhino: |Gong et al.|(2022) proposed one of the most flexible SEM-based temporal structure
learning framework that is capable of modelling (1) lagged parents; (2) history-dependent
noise and (3) instantaneous effects. Many SEM-based structure learning approach can be
regarded as a special case of Rhino. From the discussion in section SCOTCH can be
regarded as a continous-time version of Rhino. We use the authors’ opensourced imple-
mentation (https://github.com/microsoft/causica/tree/v0.0.0).

* NGM: NGM (Bellot et al., 2022) proposed to use NeuralODE to learn the mean
process of the SDE. Since this is the only baseline we are aware of in terms of
structure learning under continuous time, this will be used as our main comparison.
We use the authors’ opensourced code (https://github.com/alexisbellot/
Graphical-modelling—-continuous—time).

NGM and CUTS are originally designed for single time series setup and cannot handle multiple time
series. For fair comparison, we modify them by concatenating the multiple time series into a single
one. That is, given n time series { X (™) }_ with observation times t1, ..., 7, we convert them into
a single time series with observation times in [(n — 1) * t; + t1, n x t7] for the n'" time series. Our
assumption is that since their learning routines are batched across time points, and the concatenation
points are rarely sampled, this should have small impact to the performance in comparison to the
benefit of additional data. Empirically, this approach indeed improves the performance over simply
selecting a single time series.

For VARLiINGaM, PCMCI, and Rhino, which cannot handle irregularly sampled data, we use zero-
order hold (ZOH) to impute the missing data, which has been found to perform competitively (Cheng
et al.,[2023)) with other imputation methods such as GP regression and GRIN (Cini et al., 2022).

20

https://github.com/jakobrunge/tigramite
https://lingam.readthedocs.io/en/latest/tutorial/var.html
https://github.com/jarrycyx/unn
https://github.com/microsoft/causica/tree/v0.0.0
https://github.com/alexisbellot/Graphical-modelling-continuous-time
https://github.com/alexisbellot/Graphical-modelling-continuous-time

Published as a conference paper at ICLR 2024

C.1 COMPARISON TO ODE-BASED STRUCTURE LEARNING

In this section, we present an extended version of the example failure case of NGM presented in
section [3.2] [Bellot et al (2022) proposed a structure learning method (NGM) for learning from a
single time series generated from a SDE. Their approach learns a neural ODE dZ (t) = fo(Z(t))dt
that models the mean process of the SDE and extract the graphical structure from the first layer of fy.
Given a single observed trajectory X = {X{, };¢c(1}, they assume that the observed data follows a
multivariate Gaussian distribution (X, ,..X:,) ~ N((Zy,,..Z:,), ¥) with mean process Z; given
by the deterministic mean process (ODE), and a diagonal covariance matrix > € R/*!. As such,
NGM optimizes the following squared loss:

I
S IXe, - 2,
=1

Like SCOTCH, NGM attempts to model the underlying continuous-time dynamics and can naturally
handle irregularly sampled data. However, the Gaussianity assumption only holds when the underly-
ing SDE is linear; that is, SDEs of the form dX = (a(t) X + b(t))dt + ¢(t)dW;. For general SDEs
where the drift and/or diffusion functions are nonlinear functions of the state, the joint distribution
can be far from Gaussian, leading to model misspecification, resulting in the incorrect drift function
even if the neural network fy has the capacity to express the true drift function.

2 (35)

Another drawback of learning an ODE mean process using the objective in Equation [33] is that
it is difficult to generalise to correctly learn from multiple time series, which can be important
for recovering the underlying SDEs in practice since a single time series is just a one trajectory
sample from the SDE, and thus cannot represent the trajectory multimodality due to stochasticity.
In particular, simply computing a batch loss over all time series 22[21 Zfil HXt(n) — Z4,||3 may
fail to recover the underlying dynamics when learning from multiple time series. To demonstrate
the above argument, we propose a bi-modal failure case. Consider the following 1D SDE:

dX = Xdt+0.01dW, (36)
where the trajectory will either go upwards or downwards exponentially (bi-modality)

In Figure [2al we show trajectories sampled from this SDE, where the initial state is set to Xy = 0
for all trajectories. The optimal ODE mean process in terms of (batched) squared loss is given by
dZ = 0dt, whose solution is given by the horizontal axis; in particular, while true graph by definition
contains a self-loop, the inferred graph from this ODE has no edges. In Figure 2blwe show the ODE
mean process fy learned by NGM, together with trajectory samples from the corresponding SDE
dX = fo(X)dt + 0.01dW;. The learned ODE mean process (in black) is close to the horizontal
axis (note the scale of the vertical axis), with trajectories that do not match the data. On the other
hand, in Figure [2c| we see that SCOTCH successfully learns the underlying SDE with trajectories
closely matching the observed data and demonstrating the bi-modal behavior.

D EXPERIMENTS

D.1 CHOICE OF SDE SOLVER

There are several choices that can affect the accuracy of the SDE solver used for SCOTCH. Firstly,
discretization step size is an important factor of the solver; a smaller step size generally leads to
a more accurate SDE solution, but at the cost of additional time and space complexity. The com-
putational cost (with default Euler discretization) should scale inversely w.r.t. the step size. In the
following, we conducted an initial verification run for the Ecolil dataset with half of the original step
size reported below in appendix appendix [D.5] Appendix compares the performance with dif-
ferent step sizes. We can see that At = 0.05 results in similar performance compared to At = 0.025
(while being 2x faster). Therefore, we decide to use the step size At = 0.05. Secondly, we chose
to use a pathwise gradient estimator rather than the adjoint method (Li et al., [2020), as we found
this was more efficient time-wise and we did not run into space limitations. Although theoretically,
they should give the same performance, in practice, the pathwise gradient estimator may have an
advanage that computing its gradient does not require solving another SDE, which is subject to the
accuracy of the SDE solver. It is also possible to use higher-order numerical solvers such as the
Milstein method; however we did not explore this thoroughly in this work.

21

Published as a conference paper at ICLR 2024

2.0

0.04 1.5

0.02 L0

0.5

0.00 =
0.0

Dimension 0
o
Dimension 0
Dimension 0

-0.02 -0.5

-1.0
—-0.04

=15

—0.06
-2.0

(a) Data (b) NGM (c) SCOTCH

Figure 2: Comparison between NGM and SCOTCH for simple SDE (note vertical axis scale)

AUROC
At =0.025 | 0.747+0.005
At =0.05 | 0.752+0.008

Table 4: Performance comparisons between different choice of discretization step size At for SDE
solver.

D.2 COMPARISON TO LATENT SDES

Though appealing at first glance, attempting to directly extract graphical structure from SDEs
learned using existing methods, such as that of (2020), is very challenging. Firstly, to
extract the signature graph, one would have to evaluate the partial derivative of the drift and
diffusion networks at every input point in the input domain, which is not practical. Secondly, the
learned drift and diffusion functions may have different graphs, and it is unclear how we should
combine these. Thirdly, there are no theoretical results to justify this approach (prior to our paper’s
theory). For these reasons, prior work does not admit an easy way to extract structure.

In order to construct an simple empirical baseline following this strategy, we follow the

setup of (2020), and implement each output dimension of the drift and diffusion functions
as a separate neural network, i.e.

.f = [fla "'afD]Thq = [917"'7gD]T (37)

Using e.g. A, to denote the weight matrix of the first layer of g;, and A’gfj to denote the £™ column
of that matrix (corresponding to the k™ input dimension, then we define:

Hj j = max(| A} |2, | A} |2) (38)

Method AUROC

PCMCI+ | 0.530 &+ 0.002
NGM 0.611 £ 0.002
CUTS 0.543 4 0.003
Rhino 0.685 4 0.003
SCOTCH | 0.752 + 0.008
LSDE 0.496 4+ 0.021

Table 5: Performance comparison between methods on DREAM3 Ecolil dataset. LSDE refers to
latent SDE + extracting first layer weights.

22

Published as a conference paper at ICLR 2024

to be our (weighted) estimate of the graph structure. This has the property that whenever Hy, ; = 0,

then af L = 0 and ag; = 0. This can be extracted from a learned SDE, and we can compute an
AUROC using the weights as confidence scores.

Table [5] shows results for this approach (which we call LSDE) in comparison with SCOTCH
and other baselines on the DREAM3 Ecolil dataset. It can be seen that LSDE performs no better
than random guessing at identifying the correct edges.

D.3 SYNTHETIC DATASETS: LORENZ
D.3.1 DATA GENERATION

For the Lorenz dataset, we simulate time-series data according to the following SDE based on the
D-dimensional Lorenz-96 system of ODEs:

dXia = (Xpae1 — Xpa—2)Xpa—1 — Xpa)dt + F + 0dWy (39)

where X; 1 := X, p_1, X0 := X¢,p, and X; p41 := X, 1, with parameters set as /' = 10 and
o = 0.5. We generate N = 100 10—dimensional time series, each with length I = 100, which are
sampled with time interval 1 starting from ¢ = 0 (thatis, ¢; = 0,2 = 1,...,t100 = 99). The initial
state X ; is sampled from a standard Gaussian. To simulate the SDE, we use the Euler-Maruyama
scheme with step-size dt = 0.005.

For this synthetic dataset, we do not add observation noise to the generated time series.

To produce the irregularly sampled versions of the Lorenz dataset, for each time ¢ = 0, ..., 99, we
randomly drop the observed data at that time with probability p, independently at each time ¢ (and
for all time series n = 1, ...100). We test using p = 0.3, 0.6 in our experiments.

D.3.2 HYPERPARAMETERS

SCOTCH We use Adam (Kingma & Bal [2014) optimizer with learning rate 0.003 and 0.001 for
p = 0.3 and p = 0.6, respectively. We set the A, = 500 and EM discretization step size A = 1 for
SDE integrator, which coincides with the step size in the data generation process. The time range
is set to [0, 100]. We enable the residual connections for prior drift and diffusion network. We also
adopt a learning rate warm-up schedule, where we linearly increase the learning rate from 0 to the
target value within 100 epochs. We do not mini-batch across the time series. We train 5000 epochs
for convergence.

NGM We use the same hyperparameter setup as NGM (Bellot et al., [2022) where we set 0.1 for
the group lasso regularizer and the learning rate as 0.005. We train NGM for 4000 epochs in total
(2000 for the group lasso stage and 2000 for the adaptive group lasso stage).

VARLINGaM We set the lag to be the same as the ground truth lag = 1, and do not prune the
inferred adjacency matrix.

PCMCI+ We use partial correlation as the underlying conditional independence test. We set the
maximum lag at 2, and let the algorithm itself optimise the significance level. We use the threshold
0.07 to determine the graph from the inferred value matrix.

CUTS We use the authors’ suggested hyperparameters (Cheng et al.|[2023) for the Lorenz dataset.

Rhino We use hyperparameters with learning rate 0.01, 70 epochs of augmented lagrangian train-
ing with 6000 steps each, time lag of 2, sparsity parameter A; = 5, and enable instantaneous effects.

D.3.3 ADDITIONAL RESULTS

Figure 3| shows the curve of other metrics.

23

Published as a conference paper at ICLR 2024

auroc of CRhino on Lorenz dataset f1 of CRhino on Lorenz dataset
0.600
075 P
. p=0.6 0.575
0.70 0.550
0.65 0.525
§ 0.60 - 0.500
5 fl
0.55 0.475
0.450 ,»J\
050 I \A
0.425
0.45
0.400
0.40
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
epoch_idx epoch_idx
fdr of CRhino on Lorenz dataset tpr of CRhino on Lorenz dataset

0.650

0.625

0.8
0.600

0.575 0.7

5
5o ‘ (W\’

A
\ 0.6

tpr

0.525
o5 1AW

0.500

0.475 0.4

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
epoch_idx epoch_idx

Figure 3: The AUROC (top left), F1 score (top right), false discovery rate (bottom left) and true
positive rate (bottom right) curves of SCOTCH for Lorenz dataset. The shaded area indicates the
95% confidence intervals. Blue color indicates the dataset with missing probability 0.3 and

color indicates missing probability 0.6.

D.4 SYNTHETIC DATASETS: GLYCOLYSIS
D.4.1 DATA GENERATION

In this synthetic experiment, we generate data according to the system presented by Daniels &
Nemenman| (2015)), which models a glycolyic oscillator. This is a D = 7 dimensional system with
the following equations:

100X 1 X 6
1+ (X,6/0.52)2
200X; 1 X; 6
dXy o = (;
1+ (X.6/0.52)
dX; 3= (6X;2(1 —Xy5) — 16X, 3(4 — X16)) dt +0.01dW, 3
dX4 = (16X;5(4 — Xy.6) — 100X, 4 X, 5 — 13(X,4 — Xp.7)) dt + 0.01dW, 4
dX15 = (6X12(1 — Xp5) — 100X, 4 X, 5 — 12X, 2 X, 5) dt + 0.01dW, 5
200X;1 X6
dXee = <_ 1+ (X;6/0.52)"
dXt’7 = (1.3(Xt’4 — Xt’7) — 1.8Xt,7) dt + 0.0].th77

dX; 1 = (2.5 =) dt + 0.01dW; 1

—6X2(1 — Xy5) — 12Xt,2Xt,5> dt 4 0.01dWy 2

32X, 54— X6) — 1.28Xt,6> dt + 0.01dW, g

As with the Lorenz dataset, we simulate N = 100 time series of length I = 100, starting
at t = 0 and with time interval 1. The initial state is sampled uniformly from the ranges
X071 S [0.15, 1.60],X072 S [0.19,2.16},)(0,3 S [0.04,0.20],)(0,4 S [0.10,0.35],){075 S
[0.08,0.30], Xo,6 € [0.14,2.67], Xo,7 € [0.05,0.10], as indicated in Daniels & Nemenman|(2015).
To simulate the SDE, we use the Euler-Maruyama scheme with step-size dt = 0.005.

For this synthetic dataset, we do not add observation noise to the generated time series.

24

Published as a conference paper at ICLR 2024

D.4.2 HYPERPARAMETERS

SCOTCH We use the same hyperparameter as Lorenz experiments. The only differences are that
we use learning rate 0.001 and set A; = 200. We train SCOTCH for 30000 epochs for convergence.

NGM Since Bellot et al.|(2022)) did not release the hyperparameters for their glycolysis experi-
ment, we use the default setup in their code. They are the same as the hyperparameters in Lorenz
experiments.

VARLINGaM Same as Lorenz experiment setup.
PCMCI+ Same as Lorenz experiment setup.
CUTS Same as Lorenz experiment setup.

Rhino Same as Lorenz experiment setup.

D.4.3 ADDITIONAL RESULTS

Table [6] shows the performance comparison of SCOTCH to NGM with the original glycolysis data,
where the data have different variable scales. We can observe that this difference in scale does not
affect the AUROC of SCOTCH but greatly affects NGM. Since AUROC is threshold free, we can
see that SCOTCH is more robust in terms of scaling compared to NGM. A possible reason is that
the stochastic evolution of the variables in SDE can help stabilise the training when encountering
difference in scales, but ODE can easily overshoot due to its deterministic nature.

Figure]shows the curves of different metrics. Interestingly, we can see that data normalisation does
not improve the AUROC performance (compared to NGM), but does increase the f1 score. This may
be because f1 is threshold sensitive and the default threshold of 0.5 might not be optimal. We can
see this through the TPR plot, where has very low value.

Table 6: Performance comparison with original Glycolysis data

AUROC TPR 1 FDR |
SCOTCH | 0.73524+0.019 0.3623+0.007 0.1575+0.05
NGM 0.5248+0.057 0.3478+0.035 0.4559+0.094

D.5 DREAM3 DATASET

In this appendix, we will include experiment setups, hyperparameters and additional plots for
Dream3 experiment.

D.5.1 HYPERPARAMETERS

SCOTCH We follow similar setup as Lorenz experiment. The differences are that the learning
rate is 0.001. The time range is set to [0, 1.05] with EM discretization step size 0.05, which results
in exactly 21 observations for each time series. We choose sparisty coefficient A; = 200. For all
sub-datasets, we normalize the data to have 0 mean and unit variance for each dimension. We use
the above hyperparameters for Ecolil, Ecoli2 and Yeastl sub-datasets. For Yeast2, we only change
the learning rate to be 0.0005. For Yeast3, we change the A\, = 50. We train SCOTCH for 30000
epochs until convergence.

NGM For NGM, we follow the same hyperparameter setup as (Cheng et al., 2023)), where we set
the group lasso regulariser as 0.05, learning rate 0.005. We train NGM with 4000 epochs (2000 each
for group lasso and adaptive group lasso stages). For fair comparison, we use the same observation
time (i.e. equally spaced time points within [1, 1.05] and step size 0.05).

25

Published as a conference paper at ICLR 2024

auroc of CRhino on Glycolysis dataset f1 of CRhino on Glycolysis dataset
0.75 — Normalized
Original 0.65
0.70 W
0.65 0.60
v 0.60
3 o 0.55
5
©0.55
0.50 0.50
0.45
0.45
0.40
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
epoch_idx epoch_idx
False discovery rate of CRhino on Glycolysis dataset True positive rate of CRhino on Glycolysis dataset

4
©

os %

°
@

°
N

0.3

True positive rate
o
o

o

N}
o
wn

False discovery rate

o
IS

0.1
0.3

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
epoch_idx epoch_idx

Figure 4: The AUROC (top left), F1 score (top right), false discovery rate (bottom left) and true
positive rate (bottom right) curves of SCOTCH for Glycolysis dataset. The shaded area indicates the
95% confidence intervals. Blue color indicates the normalized dataset and color indicates the
original dataset.

PCMCI+ and Rhino As the experiment setup is the same, we directly cite the number from|Gong
et al. (2022).

CUTS We use the authors’ suggested hyperparameters (Cheng et al.l [2023) for the DREAM3
datasets.

D.5.2 ADDITIONAL PLOTS

In this section, we include additional metric curves of SCOTCH in fig.[5] Each curve is obtained by
averaging over 5 runs and the shaded area indicates the 95% confidence interval. From the value of
fl score, FDR and TPR, we can see DREAM3 is indeed a challenging dataset, where all f1 scores
are below 0.5 and FDR only drops to 0.7. From the TPR plot, it is expected to drop at the beginning
and then increase during training, which is the case for Ecolil, Ecoli2 and Yeastl. TPR corresponds
well to AUROC and F1 score, since Ecolil, Ecoli2 and Yeastl have much better values compared to
Yeast2 and Yeast3.

D.6 NETSIM
D.6.1 EXPERIMENT SETUP

For the Netsim dataset, we generate the missing data versions in the same way as the Lorenz dataset

(see appendix [D.3).

D.6.2 HYPERPARAMETERS

SCOTCH We use similar hyperparameter setup as Dream3 (appendix [D.5.1), but we change \; =
1000 and use the raw data without normalisation. We train SCOTCH for 10000 epochs.

26

Published as a conference paper at ICLR 2024

AUROC of CRhino on Dream3 dataset f1 of CRhino on Dream3 dataset

—— Ecolil
Ecoli2

—— Yeastl
070 —— Yeast2
—— Yeast3

v
o o
S %+ 0.15
® 0.60
0.10
0.55
0.50 0.05
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
epoch_idx epoch_idx
False discovery rate of CRhino on Dream3 dataset True positive rate of CRhino on Dream3 dataset
1.00
0.50
0.95 0.45
)
® 0.90 g 040
- [
Q o 0.35
5 0.85 E
@ 3 0.30
° Q
[o
& 2
E 0.80 = 0.25
0.20
0.75
0.15
0.70
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
epoch_idx epoch_idx

Figure 5: The AUROC (top left), F1 score (top right), false discovery rate (bottom left) and true
positive rate (bottom right) curves of SCOTCH for each DREAM3 sub-datasets. The shaded area
indicates the 95% confidence intervals.

NGM We follow the same setup as DREAM3 experiment, which also coincides with the setup
used in|Cheng et al.| (2023)).

PCMCI We follow the same setup as Lorenz and use threshold 0.07 to infer the graph.
CUTS We use the authors’ suggested hyperparameters (Cheng et al.|[2023)) for the Netsim dataset.

Rhino and Rhino+NolInst We directly cite the number from|Gong et al.|(2022)) for the full dataset,
and use the same hyperparameters as |Gong et al.| (2022)) for both p = 0.1 and p = 0.2 Netsim
datasets.

D.6.3 ADDITIONAL PLOTS

We include additional metric curves of SCOTCH on Netsim dataset in fig.[§] From the plot, we can
see Netsim is a easier dataset compared to DREAM3 since the dimensionality is much smaller. An
interesting observation is f1 score does not necessarily correspond well to auroc since fl score is
threshold dependent (by default we use 0.5) but not auroc. To evaluate the robustness of the model,
we decide to report AUROC instead of f1 score.

E INTERVENTIONS

Aside from learning the graphical structure between variables, one might also be interested in
analysing the effect of applying external changes, or interventions, to the system. Broadly speaking,
there are two types of interventions that we can consider in a continuous-time model. The first is to
intervene on the dynamics (that is, the drift or diffusion functions), possibly for a set period of time.
The second is to directly intervene on the value of (some subset of) variables. The goal is to employ
our learned SCOTCH model in order to predict the effect of these interventions on the underlying
system.

27

Published as a conference paper at ICLR 2024

auroc of CRhino on Netsim dataset f1 of CRhino on Netsim dataset
0.7
0.9
0.6
0.8
0.5
807 o
5 fud
® 0.4
0.6
0.3
0.5
0.2
0.4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
epoch_idx epoch_idx
False discovery rate of CRhino on Netsim dataset True positive rate of CRhino on Netsim dataset

0.9 0.8

=)
)

o

N

o
<
o
o

IS}
o
o
[t

False discovery rate
True positive rate

=)

o
o
IS

0.4 03

0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
epoch_idx epoch_idx

=)

Figure 6: The AUROC (top left), F1 score (top right), false discovery rate (bottom left) and true
positive rate (bottom right) curves of SCOTCH for Netsim dataset. The shaded area indicates the
95% confidence intervals.

The former is easy to implement as we need only replace (parts of) the learned drift/diffusion func-
tion with the intervention. However, the latter is slightly more subtle than it might first appear.
(Hansen & Sokol, 2014) proposed to define such an intervention as a function that fixes the value
of a particular variable as a function of the other variables. However, it is unclear how we can gen-
eralize this to interventions affecting more than one variable. For example, a intervention policy
71 < Za, Zo < Z1 + 1 creats a feedback loop whose semantics are not easy to resolve. Thus, we
propose the following definition:

Definition 3 (State-space Intervention). Given a D-dimensional SDE, a state-space intervention is
an idempotent function 1(t, Z) : RP+1 — RP; that is, 1(t,(t, Z)) = 1(t, Z). The corresponding
intervened stochastic process is defined by:

t t
Zy=1|t,Zo+) / f(Z)ds+) / 9(Z,)dw; (40)
0] 0

de[D] de[D

The requirement of idempotence captures the intuition that applying the same intervention twice
should result in the same result. Some examples of interventions are given as follows:

o Identity: If 1(t, Z) = Z Vt € [T1,Ts], Z € RP, then the system evolves accoridng to the
original SDE in this time period, with initial state Zr .

¢ Ordered Intervention: Given some ordered subset of the variables, we can consider inter-
vening on each variable in order, as a function of the previous variables in the order. That
is, we restrict each dimension ¢; of the intervention output to be of the form

Li(ta Zt) = Li(t7 Zt,<z‘) 41

where Z; ., = {Z,; : j < i}. It can easily be seen that ¢ is always idempotent in this
case.

* Projection: Another example of an idempotent function is a projection. This could simu-
late a setting where external force is applied to ensure the SDE trajectories satisfy spatial

28

Published as a conference paper at ICLR 2024

constraints. Note that a projection cannot necessarily be expressed as an ordered interven-
tion (e.g. consider projection onto a sphere).

In practice, we implement state-space interventions in SDEs learned from SCOTCH by modifying

the SDE solver (e.g. Euler-Maruyama) such that each step is followed with an intervention assign-
ment Z; < (t, Z).

29

	Identifiability of stochastic differential equations
	Definitions and assumptions
	Structure identifiability for observational process
	Identifiability of latent SDE
	Recovery of the ground truth graph

	Model architecture
	Baselines
	Comparison to ODE-based structure learning

	Experiments
	Choice of SDE solver
	Comparison to Latent SDEs
	Synthetic datasets: Lorenz
	Data generation
	Hyperparameters
	Additional results

	Synthetic datasets: Glycolysis
	Data generation
	Hyperparameters
	Additional results

	Dream3 dataset
	Hyperparameters
	Additional plots

	Netsim
	Experiment setup
	Hyperparameters
	Additional plots

	Interventions

