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1 MORE EXPERIMENTAL RESULTS

1.1 RESULTS ON SYNTHETIC DATASETS

Category-agnostic ShapeNet-all and ShapeNet-unseen settings The overall numerical results
have already been presented in the main paper. The detailed results with a breakdown by cate-
gories are provided in Table 1 and Table 2. We provide additional visual results in Figure 6, Figure
7 for ShapeNet-all setting and Figure 8, Figure 9 for ShapeNet-unseen setting, respectively. We
randomly sample 4 object instances for each of the testing categories in ShapeNet dataset and show
visual comparisons to PixelNeRF (Yu et al., 2021) and our baseline NeRFormer.

Category-specific ShapeNet-car and ShapeNet-chair settings The quantitative comparisons on
PSNR, SSIM and LPIPS are available in the main paper. SRN (Sitzmann et al., 2019), FE-NVS (Guo
et al., 2022) and CodeNeRF (Jang & Agapito, 2021) do not provide LPIPS result in their paper. We
calculate LPIPS result for PixelNeRF (Yu et al., 2021) using author-provided checkpoints. More
visualizations are shown in Figure 10 and Figure 11. We use view-64 and view-64, 104 as input
view(s) for one-shot and two-shot cases. For each scenario we randomly sample 5 object instances,
and show visual comparisons to PixelNeRF (Yu et al., 2021) and our baseline NeRFormer.

Figure 1: Visualizations for cross-scene generalization on NeRF Synthetic (first row), LLFF (mid-
dle row) and DTU (last row) datasets.

1.2 RESULTS ON REALISTIC DATASETS

For real-world cross-scene generalization and per-scene finetuning settings, as we illustrated in
the main paper, we adopt NeuRay (Liu et al., 2022) as baseline and evaluate on three datasets: NeRF
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Figure 2: Visualizations for per-scene finetuning on NeRF Synthetic (first row), LLFF (middle
row) and DTU (last row) datasets.

Synthetic (Niemeyer et al., 2020), DTU (Jensen et al., 2014) and LLFF (Mildenhall et al., 2019).
The quantitative results are presented in Table 3 in the main paper, and more visualizations for cross-
scene generalization setting and per-scene finetuning setting are shown in Figure 1 and Figure 2
respectively.

Table 1: Detailed results of category-agnostic ShapeNet-all setting, with a breakdown by cate-
gories. This table is an expansion of Table 1 in the main paper.

Metric Method plane bench cbnt. car chair disp. lamp spkr. rifle sofa table phone boat avg.

SRN 26.62 22.20 23.42 24.40 21.85 19.07 22.17 21.04 24.95 23.65 22.45 20.87 25.86 23.28
PixelNeRF 29.76 26.35 27.72 27.58 23.84 24.22 28.58 24.44 30.60 26.94 25.59 27.13 29.18 26.80
FE-NVS 30.15 27.01 28.77 27.74 24.13 24.13 28.19 24.85 30.23 27.32 26.18 27.25 28.91 27.08

SRT 31.47 28.45 30.40 28.21 24.69 24.58 28.56 25.61 30.09 28.11 27.42 28.28 29.18 27.87
VisionNeRF 32.34 29.15 31.01 29.51 25.41 25.77 29.41 26.09 31.83 28.89 27.96 29.21 30.31 28.76
NeRFormer 30.50 27.19 28.88 28.12 24.49 25.21 29.34 25.22 31.13 27.65 26.67 27.93 30.12 27.58

PSNR↑

NeRFormer+MRVM 32.10 28.91 30.94 29.16 26.20 27.27 31.54 27.24 32.18 29.25 28.82 29.70 31.13 29.25
SRN 0.901 0.837 0.831 0.897 0.814 0.744 0.801 0.779 0.913 0.851 0.828 0.811 0.898 0.849

PixelNeRF 0.947 0.911 0.910 0.942 0.858 0.867 0.913 0.855 0.968 0.908 0.898 0.922 0.939 0.910
FE-NVS 0.957 0.930 0.925 0.948 0.877 0.871 0.916 0.869 0.970 0.920 0.914 0.926 0.941 0.920

SRT 0.954 0.925 0.920 0.937 0.861 0.855 0.904 0.854 0.962 0.911 0.909 0.918 0.930 0.912
VisionNeRF 0.965 0.944 0.937 0.958 0.892 0.891 0.925 0.877 0.974 0.930 0.929 0.936 0.950 0.933
NeRFormer 0.953 0.921 0.922 0.947 0.870 0.879 0.924 0.869 0.971 0.916 0.913 0.928 0.946 0.920

SSIM↑

NeRFormer+MRVM 0.966 0.945 0.941 0.958 0.906 0.912 0.948 0.900 0.978 0.937 0.942 0.944 0.959 0.942
SRN 0.111 0.150 0.147 0.115 0.152 0.197 0.210 0.178 0.111 0.129 0.135 0.165 0.134 0.139

PixelNeRF 0.084 0.116 0.105 0.095 0.146 0.129 0.114 0.141 0.066 0.116 0.098 0.097 0.111 0.108
FE-NVS 0.061 0.080 0.076 0.085 0.103 0.105 0.091 0.116 0.048 0.081 0.071 0.080 0.094 0.082

SRT 0.050 0.068 0.058 0.062 0.085 0.087 0.082 0.096 0.045 0.066 0.055 0.059 0.079 0.066
VisionNeRF 0.042 0.067 0.065 0.059 0.084 0.086 0.073 0.103 0.046 0.068 0.055 0.068 0.072 0.065
NeRFormer 0.063 0.096 0.088 0.081 0.128 0.116 0.093 0.126 0.055 0.099 0.079 0.083 0.090 0.091

LPIPS↓

NeRFormer+MRVM 0.045 0.067 0.064 0.059 0.087 0.083 0.065 0.098 0.042 0.070 0.051 0.063 0.070 0.060

1.3 RESULTS ON OTHER BASELINES

We also provide the additional experimental results of adding our proposed masked ray and view
modeling (MRVM) on another advanced generalizable NeRF baseline GNT (Wang et al., 2022), on
NeRF Synthetic (Niemeyer et al., 2020) and LLFF (Mildenhall et al., 2019) datasets respectively,
and compare with another state-of-the-art method GNT-MOVE (Cong et al., 2023). The default
setting for novel-view synthesis is put in Table 3 and the few-shot setting is located in Table 4. We
conclude that the proposed masked ray and view modeling consistently benefits under all the cases.
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Table 2: Detailed results of category-agnostic ShapeNet-unseen setting, with a breakdown by
categories. This table is an expansion of Table 1 in the main paper.

Metric Method bench cbnt. disp. lamp spkr. rifle sofa table phone boat avg.

SRN 18.71 17.04 15.06 19.26 17.06 23.12 18.76 17.35 15.66 24.97 18.71
PixelNeRF 23.79 22.85 18.09 22.76 21.22 23.68 24.62 21.65 21.05 26.55 22.71
FE-NVS 23.10 22.27 17.01 22.15 20.76 23.22 24.20 20.54 19.59 25.77 21.90

NeRFormer 23.64 22.21 17.77 23.20 20.60 24.11 24.58 21.05 21.24 27.32 22.54
PSNR↑

NeRFormer+MRVM 25.46 23.28 18.72 24.79 21.93 25.19 26.63 22.61 21.78 28.54 24.08
SRN 0.702 0.626 0.577 0.685 0.633 0.875 0.702 0.617 0.635 0.875 0.684

PixelNeRF 0.863 0.814 0.687 0.818 0.778 0.899 0.866 0.798 0.801 0.896 0.825
FE-NVS 0.865 0.819 0.686 0.822 0.785 0.902 0.872 0.792 0.796 0.898 0.825

NeRFormer 0.863 0.808 0.689 0.837 0.774 0.908 0.875 0.786 0.817 0.914 0.826
SSIM↑

NeRFormer+MRVM 0.892 0.815 0.693 0.857 0.786 0.921 0.899 0.822 0.827 0.927 0.849
SRN 0.282 0.314 0.333 0.321 0.289 0.175 0.248 0.315 0.324 0.163 0.280

PixelNeRF 0.164 0.186 0.271 0.208 0.203 0.141 0.157 0.188 0.207 0.148 0.182
FE-NVS 0.135 0.156 0.237 0.175 0.173 0.117 0.123 0.152 0.176 0.128 0.150

NeRFormer 0.141 0.175 0.243 0.181 0.185 0.109 0.127 0.177 0.182 0.101 0.159
LPIPS↓

NeRFormer+MRVM 0.096 0.135 0.220 0.135 0.148 0.082 0.088 0.115 0.146 0.089 0.117

Table 3: Experimental results of adding our proposed masked ray and view modeling on the baseline
of GNT (Wang et al., 2022) and compare with GNT-MOVE (Cong et al., 2023) on NeRF Synthetic
and LLFF datasets.

Method Synthetic Object NeRF Real Forward-facing LLFF

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
GNT 27.29 0.937 0.056 25.86 0.867 0.116

GNT-MOVE 27.47 0.940 0.056 26.02 0.869 0.108
GNT+MRVM 27.78 0.942 0.052 26.25 0.873 0.110

2 MORE IMPLEMENTATION DETAILS

We first provide general configurations that are applicable across all settings, followed by configu-
rations specific to each unique setting.

General configurations For mask-based pretraining, we incorporate Lmrvm as an auxiliary loss.
It is optimized together with NeRF’s rendering loss not from the beginning, but starting from 10% of
the total training iterations until finishing. We also use a warm-up schedule for about 10k iterations
which linearly increases the coefficient λ from 0 to the final value 0.1. Both of these technical
strategies contribute to stabilize the pretraining process. At inference time, we use the VGG network
for calculating LPIPS (Zhang et al., 2018) after normalizing pixel values to [-1,1]. We perform ray
casting, sampling and volume rendering all in the world coordinate. All the models are implemented
using Pytorch (Paszke et al., 2019) framework.

2.1 IMPLEMENTATION DETAILS FOR SYNTHETIC DATASETS

Considering the images of synthetic datasets have a blank background, we adopt two techniques
following previous works (Yu et al., 2021; Lin et al., 2022) for better performance. 1) We use
bounding box sampling strategy as Yu et al. (2021) during pretraining, where rays are only sampled
within the bounding box of the foreground object. In this way, it avoids the model to learn too much
empty information at initial training stage. 2) We assign a white background color for those pixels
sampled from the background to match the rendering ground truths in ShapeNet dataset.

Settings For category-agnostic ShapeNet-all setting, we use a batch size of 16, and sample 256
rays per object. We pretrain the model for 400k iterations on 4 GPUs, with a tight bounding box for
the first 300k iterations, then we finetune the model without bounding box for 800k iterations. The
two-stage training takes about 10 days on GTX-1080Ti.

3



Published as a conference paper at ICLR 2024

Table 4: The few-shot experimental results of adding our proposed masked ray and view model-
ing on the baseline of GNT (Wang et al., 2022) and compare with GNT-MOVE (Cong et al., 2023)
on NeRF Synthetic and LLFF datasets.

Method
Synthetic Object NeRF Real Forward-facing LLFF

6-shot 12-shot 3-shot 6-shot

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GNT 22.39 0.856 0.139 25.25 0.901 0.088 19.58 0.653 0.279 22.36 0.766 0.189
GNT-MOVE 22.53 0.871 0.116 25.85 0.915 0.074 19.71 0.666 0.270 22.53 0.774 0.184

GNT+MRVM 23.52 0.869 0.120 26.10 0.911 0.079 20.88 0.672 0.257 23.54 0.777 0.175

Figure 3: Illustration for mask-based pretraining variant 1 — RGB mask. We mask blocks of pixels
and try to recover them at pretraining.

For category-agnostic ShapeNet-unseen setting, we also use a batch size of 16, and sample 256 rays
per object. We pretrain for 300k iterations with bounding box on 4 GPUs, and finetune the model
for 600k iterations without bounding box, which takes about 8 days on GTX-1080Ti.

For category-specific ShapeNet-car and ShapeNet-chair settings, we use a batch size of 8, and
sample 512 rays per object. We pretrain for 400k iterations on 4 GPUs. For the first 300k iterations,
we use 2 input views for the network to encode with a tight bounding box. For the rest of 100k
iterations, the bounding box is removed and we randomly choose 1 or 2 view(s) as the input to make
the model compatible with both one-shot and two-shot scenarios. We finetune the model for 1 or 2
view(s) respectively on 8 GPUs for 400k iterations. The two-stage training takes about 7 days on
GTX-1080Ti.

2.2 IMPLEMENTATION DETAILS FOR REALISTIC DATASETS

Following the training protocol in NeuRay (Liu et al., 2022), we first perform cross-scene pretraining
across five distinct datasets (Downs et al., 2022; Mildenhall et al., 2019; Flynn et al., 2019; Zhou
et al., 2018; Jensen et al., 2014) for 400k iterations. Afterwards, for cross-scene generalization
setting, we finetune the model on the same five training sets for additional 200k iterations. For
per-scene finetuning setting, the model is finetuned on each scene respectively in the three testing
datasets (Niemeyer et al., 2020; Jensen et al., 2014; Mildenhall et al., 2019) for additional 100k
iterations, except for the few-shot scenarios in Table 5 of the main paper where we find only 10k
iterations is sufficient for finetuning. When training the generalizable model across multiple datasets,
we randomly sample 1 scene from the training sets per iteration. We sample 512 rays for each scene
during training. All the training processes are conducted on one V100 GPU, which takes about 5
days for total pretraining and finetuning.

2.3 VARIANTS OF MASK-BASED PRETRAINING OBJECTIVES

As stated in the main paper, we conduct an elaborated ablation study on different mask-based pre-
training strategies, which are illustrated in Figure 3, Figure 4 and Figure 5.
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Figure 4: Illustration for mask-based pretraining variant 2 — Feat mask1:. We use the intermediate
representation output (boxes in blue) by Fine-Branch to reconstruct the masked feature tokens.

Figure 5: Illustration for mask-based pretraining variant 3 — Feat mask2:. We make a copy of
Fine-Branch as the target branch, in place of Coarse-Branch in the main paper.
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• RGB mask: As shown in Figure 3, we mask blocks of pixels on input images from reference
views. After extracting pyramid features with a 2D CNN, we additionally introduce an UNet-like
decoder to recover the masked image pixels based on these features. Lmrvm is the L2 distance
between reconstructed pixels and the ground truth, the constraint is only added to masked regions.
We set mask ratio to 50% and patch size to 4 at pretraining.

• Feat mask1: As illustrated in Figure 4, we perform masking operation on sampled points same as
MRVM. Differently, after obtaining intermediate representation zji from the fine branch, we use
it to recover the masked latent feature hj

i by a shallow 2-layer MLP. Lmrvm is the L2 distance
between the reconstructed latent feature vector and the unmasked ground truth. We normalize the
vector to unit-length before calculating the distance.

• Feat mask2: The pipeline for this variant is presented in Figure 5. Different from the architecture
in the main paper, we don’t utilize coarse branch as the target. On the contrary, we make a copy of
the fine branch as the target network. With the gradient stopped manually, this branch is updated
by moving average of the parameters from the online fine branch. We experimentally find that this
option may cause instability at mask-based pretraining stage, making it inappropriate as our final
proposal.
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Figure 6: More visualizations for Category-agnostic ShapeNet-all setting, Part 1.
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Figure 7: More visualizations for Category-agnostic ShapeNet-all setting, Part 2.
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Figure 8: More visualizations for Category-agnostic ShapeNet-unseen setting, Part 1.
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Figure 9: More visualizations for Category-agnostic ShapeNet-unseen setting, Part 2.
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Figure 10: More visualizations for Category-specific ShapeNet-car setting.
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Figure 11: More visualizations for Category-specific ShapeNet-chair setting.
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