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A IMPLEMENTATION DETAILS

Our method training routine uses the PyTorch library (Paszke et al., 2019). For the training of each
patch on medium and large models we consider a single NVIDIA V100-32G or a single NVIDIA
A100 respectively. To train patches on smaller NVIDIA cards we should reduce the batch size.
When not specified, patches are designed to target one the following classes: salamander, starfish,
bird house, bullfrog, pinwheel, mongoose, brown bear, accordion and common iguana.
We use Expectation over Transformations (EoT (Eykholt et al., 2018)) to obtain a more physically
realizable patch, similarly to prior work on APAs (Brown et al., 2017; Lee & Kolter, 2019; Casper
et al., 2022). For all the methods (GAP (Brown et al., 2017), LaVAN (Karmon et al., 2018), L2
(Inkawhich et al., 2019) and ours), during training, we randomly rotate the patch up to five degrees
for the x and y-axis and up to 10 degrees for the z-axis. We also randomly scale the patch between
70 × 70 to 110 × 110 pixels, adjust patch brightness between [−0.1, 0.1] and patch blur between
[0.8, 1.2], and apply normal noise of magnitude 0.1 on the patch. Patches are randomly translated in
the image but not in the center.
To control the balance between the adversarial loss and the total variation loss, the gradient of each
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loss is computed individually, normalized, and combined using a weighted sum. Following Nesti
et al. (2022) we choose wadv = 1 and wTV = 0.1 where wadv is the weight for the adversarial loss
and wTV is the weight for the TV loss.

Computation time. We measure and report the computation time of each method in Table 1. This
Table reports the averaged computational time for the different methods. Our method has a similar
computational time as other methods. This result may be counterintuitive as OT losses are known to
be slow, but in our setting, the number of samples is low. The M3D method (Zhao et al., 2023) is
much slower than other methods. It is coherent, this method trains alternatively the patch and two
models in a min-max game.

Table 1: Computational time of the different methods to obtain a fully optimized patch (minutes).
Times are averaged over ten optimization runs. Each run is launched on the same setup composed by
a single NVIDIA A100.

Method Time
GAP (Brown et al., 2017) 20
LaVAN (Karmon et al., 2018) 30
L2 (Inkawhich et al., 2019) 20
TnT (Doan et al., 2022) 30
Casper et al. (2022) 35
TTP (Naseer et al., 2021) 30
M3D (Zhao et al., 2023) 66
Ours (SW2

2)
(1)
500 19

Ours (W2
2)

(1) 20

B FEATURE POINT METHOD INSTABILITY

To measure the stability of the L2 method (Inkawhich et al., 2019), we launch the optimization
for three randomly selected target points. Patches are designed to sway ResNet50-v1 or Swin-T to
output the class Australian terrier. Figure 1 plots the learning curves and the resulting patches for
our distribution-based approach for Resnet50-v1 and Swin-T, respectively. Figure 2 and 3 plot the
learning curves and the resulted patches of the L2 method for Resnet50-v1 and Swin-T, respectively.
These four graphs show that our method is the easiest to optimize and is more robust to optimization
artifacts. For the Swin-T model, the optimization for the L2 method becomes noisy. Table 2 reports
the transfer results of the obtained patches from previous figures. Although the optimization has
converged for the first target of the L2 method for ResNet50-v1, the obtained patch is harmless. Even
if the APA works, its attacking capacity depends on the considered target point. For example, the
mean transferability on Swin-T can decreased by a factor four. In general, our distribution-oriented
approach outperforms the L2 method.

Table 2: Transfer results between categories of models (tSuc (%)) for the L2 method and for our
distribution-oriented method. Three different target points are evaluated for the L2 method. Results
are for the source model ResNet50-V1 and Swin-T, for the class Australian terrier and for patches of
size 60× 60. Patches are placed randomly in the image but not at the center of images.

Target mean / stdSource Method CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

ResNet50-v1 L2 (Inkawhich et al., 2019)
Target 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
Target 2 36.64 2.52 9.35 0.52 3.59 0.5 3.71 8.12 / 12
Target 3 43.83 4.18 8.82 0.75 4.98 0.58 6.09 9.89 / 14.1

Ours 43.34 4.76 8.75 0.92 6.46 0.63 4.68 9.94 / 13.9

Swin-T L2 (Inkawhich et al., 2019)
Target 1 4.12 1.18 2.41 0.23 1.83 1.9 0.39 1.72 / 7.8
Target 2 26.97 7.36 4.65 3.9 7.2 6.13 1.92 8.3 / 7.8
Target 3 0.17 0.11 0.12 0.1 0.1 0.07 0.1 0.11 / 0.02

Ours 50.77 12.54 14.2 7.08 13.64 8.19 5.94 16.05 / 14.5
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Figure 1: Learning curves and resulted patches of our distribution-oriented method. The optimization
is run for three different learning rate. The source model is ResNet50-v1 or Swin-T and the targeted
class is Australian terrier.
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Figure 2: Learning curves and resulted patches of the L2 method for different targeted points. For
each targeted point the optimization is run for three different learning rate. The source model is
ResNet50-v1 and the targeted class is Australian terrier.

4



Under review as a conference paper at ICLR 2024

Figure 3: Learning curves and resulted patches of the L2 method for different targeted points. For
each targeted point the optimization is run for three different learning rate. The source model is
Swin-T and the targeted class is Australian terrier.
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C FEATURE POINT METHOD GENERALIZATION

We provide in this section a proof that the exact 2-Wasserstein distance coincide with the L2-based
method Inkawhich et al. (2019) when the source distribution is uniformly distributed and the targeted
distribution is supported by a unique point. We recall that

W2
2(µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

||x− y||2dπ(x, y), (1)

defines the 2-Wasserstein distance. This distance can be interpreted through a probabilistic point
of view. If we name (X,Y ) a couple of random variables over Rd × Rd with X ∼ µ, Y ∼ ν and
(X,Y ) ∼ π ∈ Π(µ, ν), we can write

W2
2(µ, ν) = min

(X,Y )
E(X,Y )

[
||X − Y ||2

]
. (2)

If we suppose that the target distribution is composed by a unique point, i.e., ν = δy , then we have

W2
2(µ, ν) = min

X
EX

[
||X − y||2

]
. (3)

In our problem we have empirical distribution based on samples, we name µ̂n and ν̂m the empirical
distributions of µ based on n samples and ν based on m samples respectively. We suppose that
each sample from each distribution is uniformly distributed, i.e., µ̂n = 1

n

∑n
i=1 δxi

and ν̂m =
1
m

∑m
j=1 δyj

, where δ is the Kronecker symbol. The estimated 2-Wasserstein distance is

W2
2(µ̂n, ν̂m) = min

π∈Π(µ,ν)

n∑
i=1

m∑
j=1

πij ||xi − yj ||2. (4)

If we suppose that the target distribution is composed by a unique point, i.e., ν̂ = δy , then we have

W2
2(µ̂n, ν̂) =

1

n

n∑
i=1

||xi − y||2. (5)

which is equal to the L2-based criterion. Minimizing with respect to the 2-Wasserstein is equivalent
to consider the L2-based criterion (Inkawhich et al., 2019). As a result, our method includes and
generalizes the L2-based method.

D BENEFITS OF OPTIMAL TRANSPORT

Optimal transport-based losses (both exact and sliced) has the following advantages:

• OT losses take into account the underlying metric space (through the cost matrix) on which
the probability distributions are defined,

• for non-overlapping distributions such as ours, the Kullback-Leibler divergence is infinite.

To illustrate the first point, we consider the toy example shown in Figure 4. We define four different
one-dimensional distributions supported here by five points. We compute the 1-Wasserstein distance
and the KL divergence between the red and the blue distributions for each column (results are shown
between graphs). The blue mass has been moved near the first point from right to left. The 1-
Wasserstein distance captures this mass shift, while the KL divergence does not and remains constant.
This toy example highlights that OT losses capture the underlying geometry on which distributions
are defined. More details concerning the advantages of OT over other methods can be found in
(Arjovsky et al., 2017) (Part 2: Different Distances).

6



Under review as a conference paper at ICLR 2024

Figure 4: Example of distributions defined on five points with different mass values. The 1-
Wasserstein distance and the KL divergence is computed between the red and the blue distribution for
each column.

E MODEL ROBUSTNESS AND PATCH POSITION

In this section, we evaluate the robustness of models according to the patch position in images. We
consider the same families of models as before. We define nine patch positions and measure the patch
transferability when the patch is fixed at one of these positions. Figure 5 represents the nine patch
positions. We regroup these positions into three categories: Corner, Cross, and Center. We measure
the patch transferability for a patch of size 40× 40 (≈ 3% image size). Results are averaged over
methods (GAP (Brown et al., 2017), LaVAN (Karmon et al., 2018), L2 (Inkawhich et al., 2019) and
ours), classes, and categories of patch position. Table 3 reports the patch transferability according
to its position. CNNs-v1 models are much more biased by the center of images than other network
families. The accuracy of CNNs-v1 drops by a factor of 14 % when the patch is moved to corners to
the center of images. This effect is not entirely due to the occluding of the object of interest since
the patch is very small. Very recent families of networks (CNext and Swin models) are the more
balanced networks in using context in images. For these models, the accuracy is nearly the same
when the patch is placed in either corners or the center. To measure the actual efficiency of patches
and to not occlude the object of interest in the case of large patches, its patches may not be placed in
the center of images.

Table 3: Transfer results according to the categories of patch position (Accuracy (%)). Results are
averaged over methods, over classes, over patch positions and are for patches of size 40× 40.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Position

Clean
74.90 77.63 80.15 82.42 77.81 82.43 65.44

Corner 71.07 76.57 78.85 81.97 76.33 81.43 64.24
Cross 67.65 75.36 77.71 81.66 75.66 81.44 62.44
Center 61.52 72.01 74.23 80.72 73.94 80.71 57.06
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Figure 5: Illustration of the categories of patch positions.

Figure 6: Transfer and whitebox results for patches built on an ensemble of models (tSuc (%)).
Results are averaged over classes and over patch sizes. Patches are placed randomly in the image but
not at the center of images.

F ENSEMBLE METHODS

Ensemble methods train a single patch across an ensemble of models simultaneously. We determine
if an attacker building his attack on an ensemble of CNN-v1 models can significantly increase its
attacking performance on CNext or Swin models. We consider the following ordered list of models
E-CNN-v1 = {ResNet50/34/18-v1, DenseNet121} in which networks are added to the ensemble in
this order. Figure 6 plots the targeted success rate (tSuc) as a function of the number of models in the
ensemble. Even with the largest ensemble of four models, patches failed to significantly increase
their transferability performances on CNext and Swin models. This result confirms that an attacker
expecting to sway all the models uniformly should design his attack on Swin models using our
methodology. Figure 6 also shows that the feature point method becomes unstable with the increased
number of models in the ensemble.

G TRANSFERABILITY ON ADVERSARIALLY TRAINED MODELS

In this section, we study the robustness of Adversarially Trained (AT) models. We consider two
scenarios: when the patch is learned on AT models and when not. To strongly transfer on an AT
model, the patch must be designed on an AT model (Table 4). None of the other source models can
show good transferability results when applied to AT models. These results suggest that AT models
learn different representations than other networks. From Table 5, we see that the GAP method
(Brown et al., 2017) and our method are the best procedures to design a patch to target an AT model.
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Table 4: Transfer results between categories of models (tSuc (%)). Results are averaged over classes
and over patch sizes. Patches are designed using our method (W2

2)
(1).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT mean / std

Source

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 0.82 10.32 / 12.56
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 0.45 6.72 / 5.86
ENet 35.12 10.45 32.0 2.27 7.8 3.79 3.49 13.56 / 12.94
CNext 3.47 12.2 0.92 25.14 2.04 15.12 0.16 8.44 / 8.69
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 5.08 14.72 / 11.43
Swin 20.55 17.89 8.09 17.7 13.55 49.1 0.72 18.23 / 14.09
AT 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

Table 5: Transfer results between categories of models (tSuc (%)). Results are averaged over classes
and over patch sizes. Patches are placed randomly in the image but not at the center of images.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin AT

Method

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

GAP (Brown et al., 2017) 43.05 11.67 16.7 3.35 20.09 5.23 39.17 19.98 / 14.51
LaVAN (Karmon et al., 2018) 37.27 10.94 14.08 3.43 18.18 5.21 29.96 17.018 / 11.64
L2 (Inkawhich et al., 2019) 6.78 1.86 2.23 0.59 4.39 1.1 8.35 3.618 / 2.77
TnT (Doan et al., 2022) 3.71 1.33 1.41 0.8 2.61 0.85 8.03 2.688 / 2.39
Casper et al. (2022) 5.83 1.38 2.74 0.54 7.55 0.97 13.91 4.78 / 4.48
TTP (Naseer et al., 2021) 35.25 9.45 13.75 2.91 17.92 4.69 35.17 17.028 / 12.43
M3D (Zhao et al., 2023) 6.24 5.61 3.45 0.82 1.82 1.12 2.53 3.088 / 1.98
Ours (SW2

2)
(1) 22.52 5.22 8.05 2.17 11.51 3.22 21.57 10.618 / 7.79

Ours (W2
2)

(1) 39.75 10.69 17.35 3.51 19.87 5.31 38.95 19.35 / 13.77

H ROBUSTNESS ACCORDING TO PHYSICAL TRANSFORMATIONS

In this section, we measure the robustness of patches according to physical transformations. We
evaluate the L2 (Inkawhich et al., 2019), our exact Wasserstein (W2

2)
(1) and Sliced-Wasserstein

(SW2
2)

(1)
500 patches as they are the only to transfer in the easiest scenario, i.e., without patch rota-

tion, medium brightness and small distance patch-camera (Section 4.3 of the main article). Patch
transferability is measured according to z-axis rotations (rotations in the image plane), variation of
light (low and high) and distance between camera and the object (the patch is placed near the object).
Results are reported in Table 6 and Figure 7. Our patches transfer even in the worst-case scenario (far
from the camera or when rotated), while other patches do not. This indicates that our patches may be
critical in real-world scenarios. Globally, our method produces patches with better transferability
than other methods.

Table 6: Transfer results according to rotations and variation of light (tSuc %). Patches are designed
to sway networks to output the class bird house. Patches are printed and placed in the real-world near
a cup. Results are averaged over video frames and over all the networks.

Method z-axis rotations Variation of light
-45° 0° 45° Low High

L2 (Inkawhich et al., 2019) 0.8 5.7 0.23 4.4 5.7
Ours (SW2

2)
(1)
500 6.1 11.5 6.53 12 11.5

Ours (W2
2)

(1) 7.1 14.8 7.05 12.6 14.8
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Figure 7: Transfer results as a function of the distance camera-object. Patches are designed to sway
networks to output the class bird house. Patches are printed and placed in the real-world near a cup.
Results are averaged over video frames and over all the networks.

I ABLATION STUDIES

In this section, we study the effect of our method hyper-parameters. We solve the exact and the sliced
Wasserstein distance for p ∈ {1, 2} and report the results in Table 7. This Table shows that both
values of p lead to the same transferability. To penalize higher feature values, we set the value of
p = 2.

We launch the Sliced-Wasserstein distance (SW) for the following number of projections: K ∈
{500, 1000, 5000, 10000, 50000}. There is no clear advantage to considering many projections (Table
10). The best transferability results are obtained with K = 500.

We now study the effect of the number of attacked layers (N ). In Table 8, we report the transferability
results according to different numbers of targeted layers. We obtain better results for the exact
Wasserstein distance when considering multiple layers. We observe that it helps the optimization to
converge to a better local minimum, leading to stronger patches. For the Sliced-Wasserstein distance,
targeting multiple layers seems counterproductive. Table 9 details the result presented in the article
on the choice of the essential layer to target. The last layer of the encoder (l = lJ) seems essential to
model and close the gap between the two distributions and, particularly, for the Sliced-Wasserstein
distance.

To evaluate the data dependency of our method, we create different targeted distributions by changing
the number of points which compose it (m = 1, 2, 10, 100, 300, 600, 900). We launch the optimiza-
tion of patches for five different sampling seeds and three different classes. We consider the Swin-T
model as the source model. We evaluate patches using the same procedure explained in the main
article (Section 4). We report the results of the three runners-up baselines (GAP, LaVAN and TTP).
As these methods do not consider distributions, they correspond to straight lines in the figure. From
Figure 9 we see that the average targeted success rate (tSuc) increases with respect to the number of
target samples. When considering multiple points, our method leads to better transfer results and is
more stable than the L2-based method (see B). Our method performs better than decision-boundary-
based methods (GAP, LaVAN and TTP). However, we would like to emphasize that our method
requires multiple images of the target class to overcome the limitations of the L2-based approach (see
Appendix B). This data dependency is a practical limitation of our method. This practical limitation
may be simply leveraged by considering the training data of the source model when available.
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Table 7: Transfer results according to the power p (tSuc (%)). Results are averaged over classes and
over patch sizes. Patches are designed on Swin-T.

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

p

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) 25.62 19.88 10.96 18.84 13.28 55.67 24.04 / 14.91
(W1

1)
(1) 26.37 20.99 10.86 19.56 13.3 56.98 24.68 / 15.31

(SW2
2)

(1)
10000 27.82 20.22 11.29 18.6 16.66 41.43 22.67 / 9.72

(SW1
1)

(1)
10000 28.74 22.72 11.24 19.89 16.07 43.13 23.63 / 10.26

Table 8: Transfer results according to the number of targeted layers (N) (tSuc (%)). Results are
averaged over classes and over patch sizes. Patches are designed on the Swin family. Layers lJ−8

and lJ−2 correspond to the second and third block of Swin models (which are composed by four
blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

(N)

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(N)
{lJ} 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

{lJ−2, lJ} 24.87 20.38 9.59 19.77 17.77 48.42 23.47 / 12.06
{lJ−8, lJ−2, lJ} 19.14 12.45 7.52 10.56 13.55 24.75 14.66 / 14.66

(SW2
2)

(N)
{lJ} 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

{lJ−2, lJ} 24.22 18.26 8.25 15.27 17.47 34.5 19.66 / 8.14
{lJ−8, lJ−2, lJ} 15.94 10.23 6.35 8.6 12.43 17.35 11.82 / 3.89

Table 9: Transfer results according to targeted layer in the single targeted layer setting (tSuc (%)).
Results are averaged over classes and over patch sizes. Patches are designed on the Swin family.
Layers lJ−8 and lJ−2 correspond to the second and third block of Swin models (which are composed
by four blocks in total).

Target
CNNs-v1 CNNs-v2 ENet CNext DeiT Swin mean / std

L

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

(W2
2)

(1) lJ−2 17.02 15.03 6.59 14.32 12.55 38.35 17.31 / 9.95
lJ 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

(SW2
2)

(1)
lJ−8 0.3 0.19 0.19 0.14 0.17 0.2 0.2 / 0.05
lJ−2 15.39 11.2 5.2 9.08 13.37 20.44 12.45 / 4.81
lJ 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

J DECISION BOUNDARY-BASED METHODS OVERFITTING

In this section, we conduct an additional experiment to support that decision boundary-based methods
learn a patch that tends to overfit on the source model classifier. For this purpose, we consider the
transfer not between 2 different models but between 2 models sharing the same encoder but different
classifiers. We select from the different methods patches trained to attack the source model Swin-T
(Liu et al., 2021). On top of this Swin-T encoder, we train a new linear classifier from scratch on
the ImageNet train set (Deng et al., 2009). This new linear classifier reaches the same level of clean
accuracy as the previous classifier (from Pytorch (Paszke et al., 2019)) while being different. We
measured the patch performance when targeting this new network (same encoder, different linear
classifier). As expected, the transferability of decision boundary-based patches drops drastically
(nearly by half) while our patches transferability remains almost the same.
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Figure 8: Figure from (Liu et al., 2021). In red are displayed the targeted layers consider in the
article.

Figure 9: Transfer results as a function of the number of targets points supported in the target
distribution (mean tSuc (%)). Each dotted line correspond to a different sampling of points to create
the target distribution. The solid line is the average of the five dotted lines. Patches are designed on
the Swin-T source model. Results are averaged over three classes, over patch sizes and over all the
targeted networks.
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Table 10: Transfer results (tSuc (%), higher is better attack) between categories of models. Results
are averaged over classes and over patch sizes. Patches are placed randomly in the image without
object overlapping. Physical transformations (e.g., noise, rotations) are applied to patches. Control
stands for inserting a real object of the corresponding class as a patch.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

Method
Source

Clean
0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0

Control 2.85 1.59 0.86 0.54 1.57 0.93 1.39 / 0.75

(SW2
2)

(1)
500

CNNs-v1 25.25 6.15 4.73 1.7 5.15 2.61 7.6 / 8.04
CNNs-v2 16.93 8.67 4.02 4.08 5.77 3.56 7.17 / 4.69

ENet 22.53 5.83 18.8 2.07 8.49 3.03 10.13 / 7.8
CNext 3.97 11.62 1.1 29.97 3.14 14.75 10.76 / 9.86
DeiT 23.65 12.16 7.27 5.21 32.39 9.35 15.01 / 9.77
Swin 25.2 20.21 8.93 19.54 16.16 45.31 22.56 / 11.3

(SW2
2)

(1)
1000

CNNs-v1 26.38 6.13 5.59 1.96 5.85 2.8 8.12 / 8.32
CNNs-v2 16.88 8.82 3.97 3.89 5.8 3.53 7.15 / 4.71

ENet 23.56 6.45 19.18 2.25 8.55 3.01 10.5 / 8.07
CNext 4.44 12.07 1.14 33.22 3.24 15.3 11.57 / 10.89
DeiT 22.77 11.97 7.68 5.36 35.25 9.2 15.37 / 10.48
Swin 24.2 19.01 8.94 17.73 15.89 44.53 21.72 / 11.16

(SW2
2)

(1)
5000

CNNs-v1 26.4 6.11 5.37 1.83 5.2 2.65 7.93 / 8.4
CNNs-v2 14.49 8.35 3.73 3.64 5.89 3.24 6.55 / 3.96

ENet 27.44 7.04 19.85 2.16 8.88 3.12 11.42 / 9.2
CNext 4.52 13.79 1.18 31.54 3.18 16.4 11.77 / 10.45
DeiT 24.14 12.89 8.37 5.02 36.29 9.17 15.98 / 10.9
Swin 24.02 19.69 9.53 17.97 15.06 44.74 21.83 / 11.15

(SW2
2)

(1)
10000

CNNs-v1 25.73 6.25 5.51 1.86 5.75 2.67 7.96 / 8.11
CNNs-v2 18.38 10.46 4.19 4.73 6.15 4.01 7.99 / 5.14

ENet 24.49 6.6 20.26 2.14 8.64 2.98 10.85 / 8.52
CNext 2.92 9.34 0.92 23.33 2.9 12.18 8.6 / 7.68
DeiT 23.87 12.22 7.57 4.89 36.3 9.34 15.7 / 11.01
Swin 23.68 18.08 8.92 17.95 15.42 44.61 21.44 / 11.24

(SW2
2)

(1)
50000

CNNs-v1 26.16 6.16 5.4 1.89 5.32 2.7 7.94 / 8.29
CNNs-v2 13.67 8.71 3.09 4.0 4.67 3.4 6.26 / 3.8

ENet 25.66 6.06 20.4 2.11 8.73 2.99 10.99 / 8.91
CNext 3.06 10.97 0.95 27.34 3.34 16.73 10.4 / 9.31
DeiT 23.95 11.84 8.65 4.6 35.72 8.58 15.56 / 10.86
Swin 25.26 18.7 9.19 17.27 15.32 44.11 21.64 / 11.11

(W2
2)

(1)

CNNs-v1 39.65 13.01 8.27 2.44 4.89 3.16 11.9 / 12.91
CNNs-v2 19.0 11.35 3.82 4.51 3.74 4.19 7.77 / 5.69

ENet 35.12 10.45 32.0 2.27 7.8 3.79 15.24 / 13.25
CNext 3.47 12.2 0.92 25.14 2.04 15.12 9.82 / 8.64
DeiT 22.26 11.43 10.18 5.29 39.51 9.25 16.32 / 11.59
Swin 20.55 17.89 8.09 17.7 13.55 49.1 21.14 / 13.12

Table 11: Transfer results when changing the linear classifier while the encoder remains fixed
(variation of tSuc (%)). Patches are designed to fool the Swin-T model (Pytorch version, encoder
and linear classifier). The transferability is measured when targeting a new network (same encoder,
different linear classifier). Results are averaged over classes and over patch sizes.

Method Variation of tSuc (%)
GAP (Brown et al., 2017) - 61.4
LaVAN (Karmon et al., 2018) - 42.6
TTP Naseer et al. (2021) - 51.8
Ours (SW2

2)
(1)
500 - 0.27

Ours (W2
2)

(1) - 5.6
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K COMPLEMENTARY TABLES

In this section, we provide additional tables. Table 12 is the same as Table 4 present in the main paper
but results are presented for different values of smoothing factors λ.

Table 12: Transfer results on robustified models by LGS defense (Naseer et al., 2019) (tSuc (%)).
Patches are designed on Swin models.

Target mean / stdCNNs-v1 CNNs-v2 ENet CNext DeiT Swin

λ = 1.5

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.72 0.87 0.35 0.78 1.13 2.34 1.03 / 0.63

LaVAN (Karmon et al., 2018) 0.56 0.69 0.3 0.69 0.82 2.65 0.95 / 0.78
L2 (Inkawhich et al., 2019) 4.79 6.44 1.72 7.79 4.79 13.85 6.56 / 3.75

TnT (Doan et al., 2022) 0.84 0.59 0.52 0.53 0.7 0.85 0.67 / 0.13
Casper et al. (2022) 0.37 0.4 0.2 0.32 0.25 0.59 0.36 / 0.13

TTP (Naseer et al., 2021) 0.68 0.77 0.28 0.68 0.76 1.98 0.86 / 0.53
M3D (Zhao et al., 2023) 0.83 0.81 0.36 0.77 1.17 1.17 0.85 / 0.27

Ours (SW2
2)

(1)
500 10.56 11.86 3.81 18.9 11.67 31.68 14.75 / 8.75

Ours (W2
2)

(1) 13.23 13.4 4.37 21.42 13.84 32.08 16.39 / 8.58

λ = 1.9

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.61 0.81 0.32 0.68 1. 1.76 0.86 / 0.45

LaVAN (Karmon et al., 2018) 0.45 0.61 0.26 0.55 0.72 1.72 0.72 / 0.47
L2 (Inkawhich et al., 2019) 4.05 5.72 1.53 6.6 4.27 11.26 5.57 / 2.99

TnT (Doan et al., 2022) 0.82 0.61 0.51 0.52 0.62 0.81 0.65 / 0.12
Casper et al. (2022) 0.32 0.33 0.19 0.25 0.23 0.5 0.3 / 0.1

TTP (Naseer et al., 2021) 0.56 0.73 0.24 0.59 0.66 1.34 0.69 / 0.33
M3D (Zhao et al., 2023) 0.68 0.7 0.31 0.7 1.03 1.01 0.74 / 0.24

Ours (SW2
2)

(1)
500 8.56 10.49 3.27 15.93 10.39 25.96 12.43 / 7.1

Ours (W2
2)

(1) 10.95 11.98 3.78 18.37 12.35 27.07 14.08 / 7.19

λ = 2.3

Clean 0.1 0.1 0.1 0.1 0.1 0.1 0.1 / 0
GAP (Brown et al., 2017) 0.52 0.74 0.29 0.58 0.87 1.34 0.72 / 0.33

LaVAN (Karmon et al., 2018) 0.38 0.55 0.24 0.47 0.64 1.19 0.58 / 0.3
L2 (Inkawhich et al., 2019) 3.35 4.95 1.35 5.46 3.74 8.93 4.63 / 2.32

TnT (Doan et al., 2022) 0.8 0.64 0.52 0.52 0.58 0.8 0.64 / 0.12
Casper et al. (2022) 0.47 0.69 0.22 0.53 0.57 0.92 0.26 / 0.08

TTP (Naseer et al., 2021) 0.47 0.69 0.22 0.53 0.57 0.92 0.57 / 0.21
M3D (Zhao et al., 2023) 0.55 0.59 0.27 0.64 0.9 0.9 0.64 / 0.22

Ours (SW2
2)

(1)
500 6.76 9.16 2.81 13.1 9.13 20.69 10.28 / 5.59

Ours (W2
2)

(1) 8.85 10.61 3.27 15.28 10.86 22.28 11.86 / 5.85
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L PRINTABLE PATCHES

Figure 10: Printable patches designed on Swin models with our distribution-oriented method.
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