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ABSTRACT

Section A provides detailed explanations on why the integral equation (1) has such “ex-
plosive” behavior and why the Tikhonov regularization can help alleviate this problem.
Section B provides all the lemmas and proofs for establishing consistency and convergence
rate. Section C contains extra numerical studies.

A ILLPOSEDNESS & TIKHONOV REGULARIZATION

Even if small perturbations in η(x) can lead to large errors in the solution ρ(y) in the integral equation (4).
What exacerbates the problem in the target shift context is that we often do not know η or T but have to use
estimates to replace them in (4), thus introducing a substantial amount of errors in the inputs. Omitting tech-
nical details, we explain the cause of the “explosive” behavior by utilizing the singular value decomposition
of operators T and T ∗ (Kress, 1999). The solution to (4) can be represented in the following form:

ρ =
∑
i≥0

1

λi
⟨η, ψi⟩φi, (S.1)

where

1. {φi(y)}, i ≥ 0 is an orthonormal sequence in L2(Y ),

2. {ψi(x)}, i ≥ 0 is an orthonormal sequence in L2(X),

3. {λi}, i ≥ 0 is a sequence of positive numbers and limi→∞ λi = 0.

Suppose we perturb the input function η(x) by ηδ(x) = η(x) + δψj(x), the solution becomes ρδ(y) =
ρ(y)+δφj(y)/λj . The ratio between the change in the solution and in the input is ∥ρδ−ρ∥/∥ηδ−η∥ = 1/λj ,
which can be explosive as λj can be arbitrarily close to zero. In other words, relatively small errors in
estimating η(x) can result in huge changes in the solution ρ(y).

The Tikhonov regularized solution is given by

ρα =
∑
i≥0

λi
λ2i + α

⟨η, ψi⟩φi. (S.2)

Here α > 0 is a fixed regularization parameter that can mitigate the explosive term 1/λi in (S.1), thus
endowing the regularized estimator ρα with stability.

∗Correspondence to qinglong.tian@uwaterloo.ca † Equal Contribution
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A.1 THE β-REGULARITY SPACE

The β-regularity space amounts to a condition of the relationship between the smoothness on the function
ρ(y) (i.e., rate of decay of its Fourier coefficients) and the degree of ill-posedness on the operator T (i.e., rate
of decay of its singular values). For example, suppose the operator is severely ill-posed (i.e., the rate of decay
of the singular values of T is fast); the condition basically says that we will also need the function ρ(y) to be
very smooth (rapidly decay). Otherwise, ρ(y) is no longer in the β-regularity space.

To better understand the ill-posedness of the operator T , we provide an example using the Gaussian distribution.
The singular value decomposition (SVD) of general conditional expectation operators is non-trivial compared
with its counterpart for matrices. To provide some intuitive explanations, we focus on the exponential family.
More specifically, the Gaussian distribution in our response. Suppose we can factorize a joint distribution
p(x, y) into p(x|y)p(y), where

p(x|y) = 1√
2πσ2

exp

(
− (x− y)2

2σ2

)
, p(y) =

1√
2πσ2

0

exp

(
− y2

2σ2
0

)
In fact, this joint distribution p(x, y) corresponds to the model x = y + ϵ, where the random variable
y ∼ Norm(0, σ2

0) is independent of the random Gaussian noise term ϵ ∼ Norm(0, σ2). Through SVD of the
conditional expectation operator T (associated with p(x|y)), the singular values have a closed form and are
given by

λi =

(
σ2
0

σ2
0 + σ2

)i/2

.

We can see that the decay rate of λi depends on the ratio σ2/σ2
0 . Recall the model behind the joint distribution

is x = y + ϵ, where σ2 is the variance of ϵ and can be seen as noise and σ2
0 is the variance of Y and can be

seen as information. Thus, we can see that if the noise dominates the information (i.e., σ2 ≫ σ2
0), the decay

is fast. On the other hand, if the information dominates the noise (i.e., σ2
0 ≫ σ2), the decay is slow. If β is

given, and the noise-to-information ratio is high, the β-regularity space becomes smaller. In other words, it
becomes more difficult to identify functions in the high-noise setting. The reason for the resulting smaller
space is that we require the Fourier coefficients to decay at a fast rate to ensure the series is finite.

Now, back to the general model p(x, y), qualitative speaking, the singular values λi of the operator T describe
how well we know about x based on the information of y. If y does not provide much information about
x, or in other words, x contains a lot of noise, the singular values decay fast, and we say the conditional
expectation operator is severely ill-posed, and vice versa.

The β-regularization spaces are to characterize both the singular values of the conditional expectation operator
T and the Fourier coefficients of the function ρ(·). The appropriate value for β also depends on both T and
ρ(·). A larger β implies a smaller function space for ρ(·) to live in, given the operator T . Lastly, under our
identifiability assumption, we would like to point out that the β-regularity space can also be viewed as the
range of the operator (T ∗T )β/2.

B PROOFS OF THEOREM 1

First recall definitions and assumptions we make, which are again provided in below.
Assumption 1. The joint source density ps(x, y) and marginal source densities ps(x) and ps(y) satisfy∫ ∫ {

ps(x, y)

ps(x)ps(y)

}2

ps(x)ps(y)dxdy <∞.
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Definition 1. For β > 0, the β-regularity space of the compact operator T is defined as Φβ ={
ρ ∈ L2(y) such that

∑∞
i=1 ⟨ρ, φi⟩2/λ2βi <∞

}
, where {λi}∞i=1 are the decreasing sequence of nonzero

singular values of T and {φi}∞i=1 is a set of orthonormal sequence in L2(y). In other words, for some
orthonormal sequence {ϕi}∞i=1 ⊂ L2(x), Tϕi = λiφi holds for all i ∈ N.
Assumption 2. There exists a β > 0 such that the solution ρ0 ∈ Φβ .
Assumption 3. We assume x ∈ [0, 1]p, y ∈ [0, 1]; and the k-times continuously differentiable densities
ps(x, y), ps(x) and pt(x) are all bounded away from zero on their supports, i.e., ps(x, y), ps(x), pt(x) ∈
[ϵ,∞), for some ϵ > 0.
Definition 2. With a bandwidth parameter h, a function Kh : [0, 1]p × [0, 1] → R≥0 satisfy-
ing 1. Kh(x, y) = 0 if x /∈ [y − 1, y] ∩ C, where C is a compact interval independent of y

2. supx∈C,y∈[0,1] |Kh(x, y)| <∞. 3. h−(q+1)
∫ y

y−1
xqKh(x, y)dx =

{
1 for q = 0,

0 for 1 ≤ q ≤ ℓ− 1,
is referred as

a univariate generalized kernel function of order ℓ.
Assumption 4. Letting γ = min{k, ℓ}, the kernel bandwidth h, regularization parameter α and the
source sample size n satisfy lim h→0

n→∞
log (n)/(nhp+1) = 0. Furthermore, the target sample size m satisfy

lim h→0
m→∞

log (m)/(mhp) = 0.

In order to prove Theorem 1, we first state necessary lemmas with its proof.

Lemma 1. With a kernel bandwidth parameter h and γ = min{k, ℓ}, we assume ||T − T̂ ||2 =

Op

(
1/(nhp+1) + h2γ

)
, ||T ∗ − T̂ ∗||2 = Op

(
1/(nhp+1) + h2γ

)
, where || · || is an operator norm.

Proof. This results follow directly from the Lemma B.2. in the appendix of Darolles et al. (2011) and the fact
that Hilbert-Schmidt norm bounds the operator norm.

Lemma 2. Under the assumptions 3 and 4, our generalized kernel function-based approximation of ps(x),
pt(x) denoted by p̂s(x), p̂t(x) satisfies

• supx∈[0,1]p |p̂s(x)− ps(x)| = op(1)

• supx∈[0,1]p |p̂t(x)− pt(x)| = op(1)

Proof. This results follow directly from the Lemma B.1.(i) in the appendix of Darolles et al. (2011).

Lemma 3. Under the assumptions 3 and 4, let p̂s(x) be the generalized kernel-based approximation of the
source distribution ps(x). Then,

1

infx∈[0,1]p p̂s(x)
= Op(1).

Proof. Observe that

|ps(x)| ≤ |ps(x)− p̂s(x)|+ |p̂s(x)| ⇒ |ps(x)| − op(1) ≤ |p̂s(x)|,
by Lemma 2. Hence

inf
x∈[0,1]p

|ps(x)| − op(1) ≤ inf
x∈[0,1]p

|p̂s(x)|.

For a sufficiently large n to construct p̂s(x), we have

1

infx∈[0,1]p |p̂s(x)|
≤ 1

infx∈[0,1]p |ps(x)| − op(1)
=

1

infx∈[0,1]p |ps(x)|
+ op(1) = Op(1),
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where the first equality holds by the continuous mapping theorem, and the second equality follows from the
fact that ps is bounded away from zero.

Lemma 4. Under assumptions 3 and 4 ,

sup
x∈[0,1]p

[
pt(x)−

1

hp
Es

{
KX,h(x− xi,x)

pt(xi)

ps(xi)

}]2
= O(h2γ),

where Es denotes the expectation with respect to the source distribution and γ = min{k, ℓ}.

Proof. Notice

1

hp
Es

{
KX,h(x− xi,x)

pt(xi)

ps(xi)

}
=

1

hp

∫
[0,1]p

KX,h(x− u,x)pt(u)du

=

∫
∏p

i=1[
xi−1

h ,
xi
h ]

KX,h(hu,x)pt(x− hu)du

Using the Taylor expansion of pt(x− hu) centered at x , the above is equivalent to∫
∏p

i=1[
xi−1

h ,
xi
h ]

KX,h(hu,x)

pt(x)+(−h)
p∑

i=1

∂pt(x)

∂xi
ui+· · ·+ 1

γ!

∑
i1,··· ,iγ

∂γpt(x
∗)

∂xi1 · · ·xiγ
(−h)γui1 · · ·uiγ

du.
From the definition, boundedness assumption of the generalized kernel function, and continuous differentia-
bility pt(x), we get

sup
x∈[0,1]p

1

hp
Es

{
KX,h(x− xi,x)

pt(xi)

ps(xi)

}
= pt(x) +O(hγ),

from which the statement follows.

Lemma 5. Under assumptions 3 and 4,∣∣∣∣∣w(v)−
∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du

∣∣∣∣∣ = O(hγ),

where w(y) = ρ0(y) + 1 = pt(y)
ps(y)

.

Proof. Using the Taylor expansion of w centered at v, you have∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du

=

∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)

{
w(v) + h

∂w(v)

∂v
u+ · · ·+ 1

γ!

∂γw(v∗)

∂vγ
hγuγ

}
du

= w(v) +O(hγ),

where the last equality holds due to the definition, boundedness of the generalized kernel function, and
continuous differentiability of w.
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Theorem 1. For β ≥ 2, under Assumptions 1 - 4, one can show that ||ρ̂α − ρ0||2 is of order

Op

(
α2+

(
1

nhp+1
+h2γ

)(
1

nhp+1
+h2γ + 1

)
α(β−2)+

1

α2

(
1

nhp+1
+ h2γ + 1

)(
1

n
+h2γ+

√
log m

mhp

(
hγ+

√
log m

mhp

)))
.

In particular, if max

(
h2γ ,

√
log(m)
mhp hγ , log(m)

mhp

)
= op(α

2) and lim α→0
n→∞

nα2 = ∞, ρ̂α converges in proba-

bility to ρ0 as α, h→ 0, n→ ∞, and m→ ∞.

Proof. Notice ρ̂α − ρ0 = R1 +R2 +R3 where

R1 =
(
αI + T̂ ∗T̂

)−1

T̂ ∗η̂ −
(
αI + T̂ ∗T̂

)−1

T̂ ∗T̂ ρ

R2 =
(
αI + T̂ ∗T̂

)−1

T̂ ∗T̂ ρ− (αI + T ∗T )
−1
T ∗Tρ

R3 = (αI + T ∗T )
−1
T ∗Tρ− ρ.

We establish upper bounds on the norm of R1, R2, and R3, so as to bound the norm of ρ̂α − ρ0. First of all,
based on proposition 3.2 of the Darolles et al. (2011), we have ||R3||2 = O(αmin(β,2)). Secondly, notice that

R2 =
(
αI + T̂ ∗T̂

)−1 (
αI + T̂ ∗T̂ − αI

)
ρ0 − (αI + T ∗T )

−1
(αI + T ∗T − αI) ρ0

=

(
I− α

(
αI + T̂ ∗T̂

)−1
)
ρ0 −

(
I− α (αI + T ∗T )

−1
)
ρ0

= α (αI + T ∗T )
−1
ρ0 − α

(
αI + T̂ ∗T̂

)−1

ρ0.

We can rewrite

−R2 = α

((
αI + T̂ ∗T̂

)−1

− (αI + T ∗T )
−1

)
ρ0

= α
(
αI + T̂ ∗T̂

)−1 (
T ∗T − T̂ ∗T̂

)
(αI + T ∗T )

−1
ρ0

= B1 +B2,

where

B1 = α
(
αI + T̂ ∗T̂

)−1

T ∗
(
T − T̂

)
(αI + T ∗T )

−1
ρ0,

B2 = α
(
αI + T̂ ∗T̂

)−1 (
T ∗ − T̂ ∗

)
T̂ (αI + T ∗T )

−1
ρ0.

Now we provide a bound on the square of the norm of each term in B1 and B2. From Darolles et al. (2011),
it is known that ∣∣∣∣∣∣∣∣(αI + T̂ ∗T̂

)−1
∣∣∣∣∣∣∣∣2 = Op

(
1

α2

)
.

From the assumption 1 and Lemma 1, we have

||T ||2 = O(1),

||T̂ ||2 ≤ 2||T̂ − T ||2 + 2||T ||2 = Op

(
1

nhp+1
+ h2γ + 1

)
.
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In addition, note that

α (αI + T ∗T )
−1
ρ0 =

(
I− I + α (αI + T ∗T )

−1
)
ρ0

=
(
I− (αI + T ∗T )−1(αI + T ∗T − αI)

)
ρ0

=
(
I− (αI + T ∗T )−1T ∗T

)
ρ0

= ρ0 − (αI + T ∗T )
−1
T ∗Tρ0

= ρ0 − ρα.

Again by assumption 2 and the proposition of 3.11 of the Carrasco et al. (2007), we have

||α (αI + T ∗T )
−1
ρ0|| = O(αmin(β,2)).

Therefore, we have

||B1||2 ≤
∣∣∣∣∣∣∣∣(αI + T̂ ∗T̂

)−1
∣∣∣∣∣∣∣∣2 ||T ∗||2||T − T̂ ||2||α (αI + T ∗T )

−1
ρ0||2

= Op

((
1

nhp+1
+ h2γ

)
αmin(β−2,0)

)
,

||B2||2 ≤
∣∣∣∣∣∣∣∣(αI + T̂ ∗T̂

)−1
∣∣∣∣∣∣∣∣2 ||T ∗ − T̂ ∗||2||T̂ ||2||α (αI + T ∗T )

−1
ρ0||2

= Op

((
1

nhp+1
+ h2γ

)2

αmin(β−2,0) +

(
1

nhp+1
+ h2γ

)
αmin(β−2,0)

)
.

Combining all together, we get

||R2||2 ≤ 2||B1||2 + 2||B2||2 = Op

((
1

nhp+1
+ h2γ

)2

αmin(β−2,0) +

(
1

nhp+1
+ h2γ

)
αmin(β−2,0)

)
.

Lastly, we obtain the upper bound on the norm of R1. Note that

||R1||2 ≤
∣∣∣∣∣∣∣∣(αI + T̂ ∗T̂

)−1
∣∣∣∣∣∣∣∣2 ||T̂ ∗||2||η̂ − T̂ ρ0||2.

Recall that
∣∣∣∣∣∣∣∣(αI + T̂ ∗T̂

)−1
∣∣∣∣∣∣∣∣2 = Op

(
1
α2

)
and ||T ∗||2 = Op

(
1

nhp+1 + h2γ + 1
)

by assumption 1 and

Lemma 1. To obtain an upper bound on ||η̂ − T̂ ρ0||2, note that

η̂ − T̂ ρ0 = η̂ + 1− (T̂ ρ0 + 1)

=
p̂t(x)

p̂s(x)
−

(∫
[0,1]

(ρ0(y) + 1)
p̂s(x, y)

p̂s(x)
dy

)

=
1

p̂s(x)

(
p̂t(x)−

∫
[0,1]

w(y)p̂s(x, y)dy

)
,

where w(y) = ρ0(y) + 1. Here, p̂t(x) is the KDE estimator for pt(x) based on the unlabeled target data, and
p̂s(x), p̂s(x, y) are respectively the KDE estimator for ps(x), ps(x, y) based on the source data. For succinct
expressions, we introduce the following notation;

A(x) = p̂t(x)−
∫
[0,1]

w(y)p̂s(x, y)dy.
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One can observe that∣∣∣∣∣∣∣∣A(x)p̂s(x)
− A(x)

ps(x)

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣A(x)ps(x)−A(x)p̂s(x)

p̂s(x)ps(x)

∣∣∣∣∣∣∣∣ ≤ supx∈[0,1]p |ps(x)− p̂s(x)|
infx∈[0,1]p |p̂s(x)|

∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣ .
By Lemma 2 and 3, we observe that∣∣∣∣∣∣∣∣A(x)p̂s(x)

− A(x)

ps(x)

∣∣∣∣∣∣∣∣ = Op

(∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣) ,
which gives us∣∣∣∣∣∣∣∣A(x)p̂s(x)

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣+Op

(∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣) = Op

(∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣)⇒ ||η̂ − T̂ ρ0||2 = Op

(∣∣∣∣∣∣∣∣A(x)ps(x)

∣∣∣∣∣∣∣∣2
)

To establish an upperbound of
∣∣∣∣∣∣ A(x)

ps(x)

∣∣∣∣∣∣2, we decompose A(x) into

A(x) = A1(x) +A2(x) +A3(x),

with

A1(x) = p̂t(x)−
1

nhp

n∑
i=1

KX,h(x− xi,x)ζ(xi),

A2(x) =
1

nhp

n∑
i=1

KX,h(x− xi,x)ζ(xi)−
1

nhp

n∑
i=1

KX,h(x− xi,x)w(yi),

A3(x) =
1

nhp

n∑
i=1

KX,h(x− xi,x)w(yi)−
∫
[0,1]

w(y)p̂s(x, y)dy

=
1

nhp

n∑
i=1

KX,h(x− xi,x)w(yi)−
1

nhp+1

n∑
i=1

∫
[0,1]

w(y)KY,h(y − yi, y)KX,h(x− xi,x)dy

=
1

nhp

n∑
i=1

KX,h(x− xi,x)

(
w(yi)−

1

h

∫
[0,1]

w(y)KY,h(y − yi, y)dy

)
,

where (xi, yi)
n
i=1 are i.i.d. samples of (X, Y ) ∼ ps, ζ(x) = pt(x)

ps(x)
and w(y) = ρ0(y) + 1 = pt(y)

ps(y)
. Here,

KX,h is the product of p univariate generalized kernel function of of order ℓ. In a similar fashion, KY,h is a

univariate generalized kernel function of of order ℓ. . First, we establish the upper bound of
∣∣∣∣∣∣A1(x)

ps(x)

∣∣∣∣∣∣2. We
re-express A1(x) into

A1(x) = p̂t(x)− pt(x) + pt(x)−
1

nhp

n∑
i=1

KX,h(x− xi,x)ζ(xi) = A11(x) +A12(x),

where

A11(x) = p̂t(x)− pt(x)

A12(x) = pt(x)−
1

nhp

n∑
i=1

KX,h(x− xi,x)ζ(xi).

7



Published as a conference paper at ICLR 2024

By the Lemma B.1. in the appendix of Darolles et al. (2011), we observe that∣∣∣∣∣∣∣∣A11(x)

ps(x)

∣∣∣∣∣∣∣∣2≤ sup
x∈[0,1]p

|p̂t(x)−pt(x)|2
(∫

[0,1]p

1

ps(x)
dx

)
=Op

(√
log m

mhp

(
hγ+

√
log m

mhp

)
+ h2γ

)

Next, we have

A12(x)
2 = pt(x)

2 − 2pt(x)

nhp

n∑
i=1

KX,h(x− xi,x)ζ(xi)+

1

n2h2p

 n∑
i,j=1

KX,h(x− xi,x)KX,h(x− xj ,x)ζ(xi)ζ(xj)

 ,

which leads to

Es

(
A12(x)

2
)
= pt(x)

2 − 2pt(x)

hp
Es (KX,h(x− xi,x)ζ(xi)) +

n− 1

nh2p
E2
s (KX,h(x− xi,x)ζ(xi))

+
1

nh2p
Es

(
KX,h(x− xi,x)

2ζ(xi)
2
)

≤
(
pt(x)−

1

hp
Es (KX,h(x− xi,x)ζ(xi))

)2

+
1

nh2p
Es

(
KX,h(x− xi,x)

2ζ(xi)
2
)
,

where the expectation is with respect to the source distribution. By the Fubini’s theorem, we have

Es

(∣∣∣∣∣∣∣∣A12(x)

ps(x)

∣∣∣∣∣∣∣∣2
)

=

∫
[0,1]p

Es

(
A12(x)

2
) 1

ps(x)
dx.

Note that, using the change of variables,

1

nh2p
Es

(
KX,h(x− xi,x)

2ζ(xi)
2
)
=

1

n

∫
[0,1]p

1

h2p
KX,h(x− u,x)2

pt(u)
2

ps(u)
du

=
1

n

∫
∏p

i=1[
xi−1

h2 ,
xi
h2 ]

KX,h(h
2u,x)2

pt(x− h2u)2

ps(x− h2u)
du.

Boundedness of KX,h, continuity and nonzero lower bound of pt and ps yields

1

nh2p
Es

(
KX,h(x− xi,x)

2ζ(xi)
2
)
= O

(
1

n

)
.

Combining with the Lemma 4, which states that

sup
x∈[0,1]p

(
pt(x)−

1

hp
Es (KX,h(x− xi,x)ζ(xi))

)2

= O(h2γ),

we deduce that

Es

(∣∣∣∣∣∣∣∣A12(x)

ps(x)

∣∣∣∣∣∣∣∣2
)

= O

(
h2γ +

1

n

)
,

which implies ∣∣∣∣∣∣∣∣A12(x)

ps(x)

∣∣∣∣∣∣∣∣2 = Op

(
h2γ +

1

n

)
,

8



Published as a conference paper at ICLR 2024

by the Markov inequality. Combining the upperbound of
∣∣∣∣∣∣A11(x)

ps(x)

∣∣∣∣∣∣2 and
∣∣∣∣∣∣A12(x)

ps(x)

∣∣∣∣∣∣2, we have∣∣∣∣∣∣∣∣A1(x)

ps(x)

∣∣∣∣∣∣∣∣2 = Op

(√
log m

mhp

(
hγ+

√
log m

mhp

)
+ h2γ +

1

n

)
(S.3)

Next, we establish an upperbound for
∣∣∣∣∣∣A2(x)

ps(x)

∣∣∣∣∣∣2. Let ∆i = ζ(xi)− w(yi). Then,

Es

(∣∣∣∣∣∣∣∣A2(x)

ps(x)

∣∣∣∣∣∣∣∣2
)

= Es

∣∣∣∣∣
∣∣∣∣∣ 1

nhpps(x)

n∑
i=1

KX,h(x− xi,x)∆i

∣∣∣∣∣
∣∣∣∣∣
2


=
1

n2h2p

∑
i ̸=j

∫
[0,1]p

Es(∆iKX,h(x− xi,x))Es(∆jKX,h(x− xj ,x))
1

ps(x)
dx

+
1

nh2p

∫
[0,1]p

Es(∆
2
iK

2
X,h(x− xi,x))

1

ps(x)
dx

where in the the last equality we used the Fubini’s theorem. Now one can show that
Es(∆iKX,h(x− xi,x)) = Exi

(
Eyi|xi

(∆iKX,h(x− xi,x))
)
= Exi

(
Eyi|xi

(∆i)KX,h(x− xi,x)
)
= 0

since

Eyi|xi
(∆i) = ζ(xi)−

∫
[0,1]

pt(y)

ps(y)
ps(y|xi)dy = ζ(xi)−

∫
[0,1]

pt(xi, y)

ps(xi, y)
ps(y|xi)dy

= ζ(xi)−
pt(xi)

ps(xi)

∫
[0,1]

pt(y|xi)dy = 0.

Notice that we used the fact pt(y)
ps(y)

= pt(xi,y)
ps(xi,y)

in the first equality above, which is true by the target shift
assumption. Furthermore,

1

h2p
Es(∆

2
iK

2
X,h(x− xi,x))

=

∫
[0,1]

∫
[0,1]p

1

h2p
(ζ(u)− w(y))

2
K2

X,h(x− u,x)ps(u, y)dudy

=

∫
[0,1]

∫
∏p

i=1[
xi−1

h2 ,
xi
h2 ]

(
ζ(x− h2u)− w(y)

)2
K2

X,h(h
2u,x)ps(x− h2u, y)dudy.

By the boundedness of KX,h, ps, pt and positive lowerbound of ps, pt, we observe that
1

h2p

∫
[0,1]p

Es(∆
2
iK

2
X,h(x− xi,x))

1

ps(x)
dx = O (1) .

Combining everything, we get Es

(∣∣∣∣∣∣A2(x)
ps(x)

∣∣∣∣∣∣2) = O
(
1
n

)
. Again using the Markov’s inequality this leads to∣∣∣∣∣∣∣∣A2(x)

ps(x)

∣∣∣∣∣∣∣∣2 = Op

(
1

n

)
.

Lastly, to obtain the upperbound of
∣∣∣∣∣∣A3(x)

ps(x)

∣∣∣∣∣∣2, notice

Es

∣∣∣∣∣∣∣∣A3(x)

ps(x)

∣∣∣∣∣∣∣∣2 =

∫
[0,1]p

Es

(
A2

3(x)
) 1

ps(x)
dx = O

(
sup

x∈[0,1]p
Es

(
A2

3(x)
))

.

9
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Letting

B(yi) = w(yi)−
1

h

∫
[0,1]

w(y)KY,h(y − yi, y)dy,

we have

A3(x) =
1

nhp

n∑
i=1

KX,h(x− xi,x)B(yi).

Therefore,

Es

(
A2

3(x)
)
=Es

(
1

n2h2p

( n∑
i=1

K2
x,h(x− xi,x)B

2(yi)

+
∑
i̸=j

KX,h(x− xi,x)KX,h(x− xj ,x)B(yi)B(yj)
))

=
1

nh2p
Es(K

2
X,h(x− xi,x)B

2(yi)) +
n− 1

nh2p
E2
s(KX,h(x− xi,x)B(yi))

≤ 1

nh2p
Es(K

2
X,h(x− xi,x)B

2(yi)) +
1

h2p
E2
s(KX,h(x− xi,x)B(yi)).

Using change of variables,
1

h2p
Es(K

2
X,h(x− xi,x)B

2(yi))

=

∫
[0,1]

∫
[0,1]p

1

h2p
K2

X,h(x− u,x)

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)2

ps(u, v)dudv

=

∫
[0,1]

∫
∏p

i=1[
xi−1

h2 ,
xi
h2 ]

K2
X,h(h

2u,x)

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)2

ps(x− h2u, v)dudv

= O

∫
[0,1]

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)2

dv

 ,

where the last equality holds for any x due to boundedness of Kx,h and ps with a positive lower bound of ps.
In particular, we have

sup
x∈[0,1]p

1

h2p
Es(K

2
X,h(x− xi,x)B

2(yi)) = O

∫
[0,1]

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)2

dv

 .

We observe that

w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy = w(v)−
∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du,

and, ∫
[0,1]

(
w(v)−

∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du

)2

dv

≤ 2

∫
[0,1]

w2(v)dv +

∫
[0,1]

(∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du

)2

dv



10
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by the boundedness of KY,h, ps, pt and the positive lower-bounds of ps, pt, we know that the quantity above
is bounded and hence,

sup
x∈[0,1]p

1

nh2p
Es(K

2
x,h(x− xi,x)B

2(yi)) = O

(
1

n

)
.

To deal with the remaining term, one can observe that

sup
x∈[0,1]p

∣∣∣∣ 1hpEs(KX,h(x− xi,x)B(yi))

∣∣∣∣
≤ sup

x∈[0,1]p

∫
[0,1]

∫
[0,1]p

∣∣∣∣∣ 1hpKX,h(x− u,x)

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)
ps(u, v)

∣∣∣∣∣ dudv
= sup

x∈[0,1]p

∫
[0,1]

∫
[0,1]p

∣∣∣∣∣KX,h(hu,x)

(
w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

)
ps(x− hu, v)

∣∣∣∣∣ dudv
= O

(∣∣∣∣∣w(v)− 1

h

∫
[0,1]

KY,h(y − v, y)w(y)dy

∣∣∣∣∣
)

= O

(∣∣∣∣∣w(v)−
∫
[−v

h , 1−v
h ]

KY,h(hu, v + hu)w(v + hu)du

∣∣∣∣∣
)

where the second to the last equality comes from the boundedness of KX,h, ps and the positive lower-bounds
of ps. From the Lemma 5, we know that

sup
x∈[0,1]p

1

hp
Es(|Kx,h(x− xi,x)B(yi))| = O(hγ).

Therefore, we get

sup
x∈[0,1]p

Es

(
A2

3(x)
)
= O

(
1

n
+ h2γ

)
⇒ sup

x∈[0,1]p
Es

∣∣∣∣∣∣∣∣A3(x)

ps(x)

∣∣∣∣∣∣∣∣2 = O

(
1

n
+ h2γ

)
⇒
∣∣∣∣∣∣∣∣A3(x)

ps(x)

∣∣∣∣∣∣∣∣2 = Op

(
1

n
+ h2γ

)
Combining together, we establish the Theorem 1.

B.1 DISCUSSION ON TARGET DOMAIN GENERALIZATION ERROR

The target-domain generalization error is given by

Es

{
ω(y)ℓ(f̂(x), y)

}
− 1

n

n∑
i=1

ω̂(yi)ℓ(f̂(xi), yi).

One approach to bound this generalization error is by uniformly bounding the difference between the true and
empirical risks over the hypothesis class of models.

sup
f

∣∣∣∣∣ 1n
n∑

i=1

ω̂(yi)ℓ(f(xi, yi))− Es {ω(y)ℓ(f(x), y)}

∣∣∣∣∣ .
11
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Under some regularity conditions, the error above is dominated by

sup
f

|Es {ω(y)ℓ(f(x), y)} − Es {ω̂(y)ℓ(f(x), y)}| ≤
√
Es {ω(y)− ω̂(y)}2 sup

f
Es {ℓ2(f(x), y)} .

For the term that involves ω̂, we can see that we can bound the target domain error by directly bounding
Es {ω(y)− ω̂(y)}2. In Theorem 1, we provide a bound for

∥ρ̂− ρ0∥2 =

∫
{ρ̂(y)− ρ0(y)}2 ps(y)dy = Es {ω(y)− ω̂(y)}2 .

Thus, the weighted L2 norm we are using is directly bounding the target domain generalization error.

C EXPERIMENTAL DETAILS AND RESULTS

C.1 DETAILS FOR EXPERIMENTS IN SECTION 5

In this section, we will provide the details for experimental studies in Section 5.

Dataset and Model Setup.

1. Synthetic nonlinear regression dataset: the data are generated with x = y + 3 × tanh(y) + ϵ, where
ϵ ∼ Normal(0, 1). The training source data have target ys from Normal(0, 2) and the testing data have the
target yt from Normal(µt, 0.5). µt is used to adjust the target shift. As for the target prediction, we adopt
the polynomial regression model with degrees as 5: y = β0 +

∑5
i=1 βix

i.

2. The SOCR dataset1 contains 1035 records of heights, weights, and position information for some current
and recent Major League Baseball (MLB) players. This task aims to predict the players’ heights with their
weights. For the data splitting, we use the data of outfielder players as the testing data and the others as
the training source data. Thus, there are a total of 841 records in the training source data and 194 records
testing data. As shown in Figure S.1(a), there is a strong correlation between the player’s weights and
heights. Also, it is natural to consider the causal relation: height → weight, which justifies the continuous
target shift assumption. Figure S.1(b)-(c) show the target shift between the training and testing data. It can
be seen that the testing data (i.e., the outfielder players) tend to have lower height values compared with the
training source data. For the target prediction, we adopt the spline regression model.

3. The Szeged weather dataset2 comprises weather-related data recorded in Szeged, Hungary, from 2006 to
2016. Our study uses the noon temperature as the target and treats the humidity as the covariate. We utilize
data from January to October as the training source dataset, while data from November and December
constitute the testing dataset, so the testing data tend to have lower temperature values than the training
source data. This is because there is a causal relationship between temperature and humidity: it tends to
decrease relative humidity when temperature rises (also see Figure S.2(a).

Hyperparameter Tuning. Our proposed adaptation method involves two categories of hyperparameters:
kernel bandwidths and a regularization parameter. We use the kernel bandwidths for the first category to
construct the matrices Cξ and Cζ . We adopt the median trick, as proposed in the works of Zhang et al. (2013);
Garreau et al. (2017), to select the bandwidths. Specifically, for Cξ, we set the bandwidth νξ = 1

2

√
Hξ,ñ/2,

where Hξ,ñ = median(∥ξi − ξj∥2, 1 ≤ i < j ≤ ñ) is the median of the squared Euclidean distances between
all pairs of samples in a subset of size ñ drawn from the data. We choose ñ as min{n, 1000} to reduce
redundant computation. We follow a similar procedure to select the bandwidth for Cζ . The second category

1http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights
2https://www.kaggle.com/datasets/budincsevity/szeged-weather
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Figure S.1: The SOCR dataset: (a) shows the joint distribution of the players’ weights and heights across
whether their positions are outfielder; (b) shows the height densities in the training and testing data; (c) shows
the empirical estimation of the oracle importance weights.
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Figure S.2: The Szeged weather dataset: (a) shows the joint distribution of the temperature and humidity; (b)
shows the height densities in the training and testing data; (c) shows the empirical estimation of the oracle
importance weights.

of hyperparameters is the regularizer parameter α. Choosing a large value of α leads to underfitting of the
estimator ρ as it is forced to be close to zero. Conversely, a small value of α leads to overfitting of ρ. In all
of our experiments, we set α = n−1/4 to satisfy the condition in Remark 7. Additionally, we adopted the
Gaussian kernel in all our experiments.

C.2 SENSITIVITY ANALYSIS WITH NONLINEAR REGRESSION DATASET

C.2.1 SIMPLE COMPARISON ON WEIGHT ESTIMATION UNDER DIFFERENT TARGET SHIFT.

In this part, we would like to provide a simple comparison on the weight estimation across different methods.
We fixed the sample size n = 200 and tune µt. The results are shown in Figure S.3. It can be seen that our
method keeps the similar pattern as the oracle weight. KMM method has a poor estimation at the boundary.
L2IWE method performs worse when µt is large.

C.2.2 RUNNING TIME COMPARISONS

Under the setting of Section 5.1, we run 50 Monte Carlo experiments to investigate the computational
efficiency of the proposed method. We compared the running times of the three methods, ours, KMM and
L2IWE, and the results are given in Figure S.4: our method is the fastest among the three methods.

C.2.3 IMPACT OF THE DENSITY RATIO ESTIMATION

13
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Figure S.3: Weight comparison under n = 200 and different µt.
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Figure S.4: The total computation time comparison over the 50 replications under different sample sizes.

In this section, we investigate the impact of different density ratio estimation approach on η(x) = p̂t(x)/p̂s(x).
In our previous experiments, our estimation is to get the direct ratio of two estimated densities p̂t(x) and
p̂s(x). Instead of this, we can also directly estimate the density ratio. Here we consider the RuLSIF method
proposed in Yamada et al. (2013) for the density ratio estimation. Following the experiment design in
Section 5.1, we compare the performances under these two methods and show the results in Figure S.5. It can
be seen that the two methods performs similar but method with ratio of two estimated densities is better.

C.2.4 IMPACT OF THE REGULARIZATION PARAMETER α

In this part, we conduct the experiments for sensitivity analysis of our proposed ReTaSA method with respect
to the regularization parameter α. Here all the experiments are reproduced with 50 random trials. For the
regularization parameter α, it is worth noting that a larger value of α will push the estimated adaptation
weight towards 1, while a smaller α will result in a larger estimation variation. In our experiments, we range
the value of α from 10−2 to 1. The results are shown in Figure S.6. Note that in Section C.1 we use the
theoretical order n−1/4 to tune α. So in Figure S.6, we mark the results with theoretical setting with star
points. It can be seen that, the performances of our method get better as α increases at the beginning while
then get worse with further enlarged α. But the theoretical setting can almost reach the best performance
status.

C.3 WEIGHT ESTIMATION ON THE SOCR AND WEATHER DATASETS

14
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Figure S.5: Comparison of ReTaSA with different density ratio estimation methods: ‘Direct’ means direct
ratio of two estimated density function; ‘RuLSIF’ is the density ratio estimation method proposed in Yamada
et al. (2013). The first row is on the metric of weight MSE and log scale; The second row is on the metric of
Delta Accuracy.
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(a) n = 200, µt = 0.5 (b) n = 500, µt = 0.5 (c) n = 500, µt = 1.5

Figure S.6: Sensitivity analysis of regularization parameter α on the synthetic nonlinear regression dataset.
The first row is on the metric of weight MSE and the second row is on the metric of ∆Accuracy.

In this part, we’d like to provide a view of the weight estimation on the two real-world datasets in Section 5.
For each dataset, we select three trials and show their results in Figure S.7-S.8. It can be seen that the
estimated weights from our method are the cloest to the oracle weights. KMM methods has a poor estimation
on the boundary and L2IWE method cannot capture the weight pattern well especailly the target shift is
intensive.
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Figure S.7: The weight estimations on the SOCR datasets. The three figures are corresponding to 3 random
trials.
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Figure S.8: The weight estimations on the Szeged weather datasets. The three figures are corresponding to
first three years.

C.4 RETASA WITH BLACK-BOX MODEL

The following experiments aim to investigate the performance of ReTaSA combined with the black box model.
When the features x are high-dimensional, the KDE method may suffer from the curse of dimensionality.
Using a similar idea from Lipton et al. (2018), we solve the dimensionality problem by finding a “black-box”
predictive model, which essentially maps the multivariate x to a scalar representation z ≡ Ês(y|x) that
Ês(y|x) is a trained predictive model on the source domain. Note that the target shift assumption holds for
p(z|y) (see Lemma 1 in Lipton et al. 2018); thus, we can apply the proposed method by treating z as x
without making any changes.

C.4.1 EXPERIMENT WITH MULTIVARIATE REGRESSION

Datasets. Our experiments are on the following two datasets: the synthetic multivariate regression dataset
and the UCI Communities and Crime Dataset (Dua & Graff, 2019). In these two datasets, the features x are
multivariate. Without loss of generality, we adopt the linear model as the linear regression model for both
black-box mapping and prediction.

1. The synthetic multivariate regression dataset: The data are generated from the model Y = xTβ + ϵ, where
x,β ∈ R5 and ϵ ∼ Normal(0, 1). The element values of x are generated from Normal(0, 1). We set the
regression coefficients with a randomly generated vector β = [1.132, 2.465, 7.776, 0, 0]⊤. The data with
top and bottom 5% response values are filtered.

2. The UCI communities and crime dataset: The response variable y is the logarithm of the total number
of violent crimes per 100K population (ViolentCrimesPerPop), and we predict it with the following
features: the number of vacant households (HousVacant); the percent of housing occupied (PctHousOccup);
the percent of households owner occupied (PctHousOwnOcc); the percent of vacant housing that is
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Table 1: The experimental results of adaptation weight estimation and improved prediction performance
on the synthetic multivariate regression datasets. The numbers reported before and after ± symbolize the
mean and standard deviation, respectively. The bold values are the results with the best performance, while
Oracle-Adaptation is excluded due to being practically feasible.

Setting Weight MSE ∆Pred. MSE (%)
n Shift None KMM Ours Oracle KMM Ours

200
Mild 0.01±0.00 0.10±0.06 0.02±0.01 0.07±0.43 0.07±1.31 0.16±0.60

Moderate 0.07±0.00 0.08±0.05 0.02±0.01 0.25±1.07 −0.01±1.46 0.24±0.89

Intense 0.31±0.01 0.08±0.05 0.03±0.01 0.61±1.94 0.68±1.84 0.73±1.28

500
Mild 0.01±0.00 0.05±0.02 0.01±0.01 −0.02±0.21 −0.12±0.61 −0.03±0.29

Moderate 0.07±0.00 0.05±0.03 0.01±0.01 0.04±0.62 −0.11±0.81 0.02±0.54

Intense 0.32±0.01 0.04±0.03 0.02±0.01 1.01±1.17 0.86±1.17 0.95±0.88

1000
Mild 0.01±0.00 0.02±0.01 0.01±0.01 0.03±0.11 −0.06±0.21 −0.02±0.12

Moderate 0.08±0.00 0.02±0.01 0.01±0.01 0.14±0.46 0.08±0.52 0.11±0.41

Intense 0.32±0.01 0.03±0.02 0.02±0.01 1.21±0.75 1.17±0.74 1.14±0.57

boarded up (PctVacantBoarded); the percent of vacant housing that has been vacant more than six
months (PctVacMore6Mos); the percentage of people 16 and over, in the labor force, and unemployed
(PctUnemployed); the percentage of people 16 and over who are employed (PctEmploy).

Continuous Target Shift Mechanism. We propose a bias sampling strategy to change the marginal dis-
tribution of the response y to create a target shift. Denote the empirical cumulative distribution function
(cdf) of response y in a raw dataset D as F̂ (y). We first uniformly sample n observations from the raw
dataset and treat them as labeled source data. For target data, we generate m random numbers {ui}mi=1 from
some distribution with density g(·) on support [0, 1]. Then we pick the observations {(xi, yi)} from the
raw dataset whose quantile of yi is ui (i.e., supy{y|F̂ (y) ≤ ui, y ∈ D}), for i = 1, . . . ,m, as the target
data. Next, we show that under such a bias sampling strategy, the importance weight function is given by
ω(y) = g

{
F̂ (y)

}
: Letting the cdf of the raw data be F (·) and denote U1 ∼ uniform(0, 1) and U2 ∼ g(u).

Then random variable F−1(U1) has the same distribution as the marignal distribution ps(y) while F−1(U2)
has the same distribution as pt(y). Then distribution of F−1(U1) is given by ps(y) = g {F (y)} f(y), where
f(y) is the corresponding pdf of F (y). Similarly, we have pt(y) = 1 · f(y). Thus, the importance weight
function is ω(y) = pt(y)

ps(y)
= g {F (y)}. By replacing F (·) with the empirical F̂ (·), we can obtain the “true”

importance weight function.

One can see that if g(·) is uniform, the target and source data are from the same distribution (i.e., ω(y) = 1
for all y). In our experiments, we use a truncated normal distribution g(u) ∼ T N (µt, σ

2
t , 0, 1). Unless

otherwise specified, we set µt = 0.75. We use different values of σ2
t to adjust the shift, and a smaller value

corresponds to a more severe shift.

Performance Comparison. In this part, we showcase the effectiveness of our proposed method in mitigating
the negative impact of target shift. Without a loss of generality, the linear regression model is used for the
feature dimension reduction and response prediction. We aim to study the methods’ performances under
different sample sizes and shift settings. In our study, the sample size ranges from {200, 500, 1000} and σ2

t is
from {0.3, 0.5, 0.9}. Note that as σ2

t increases, the truncated normal distribution becomes flat, and thus, the
shift becomes mild. Thus, we represent the σ2

t settings with three shift levels, {Mild: σ2
t = 0.9, Moderate:

σ2
t = 0.5, Intense: σ2

t = 0.3}. We reproduce the experiments with 20 trials for each setting.
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Table 2: The experimental results of adaptation weight estimation and improved prediction performance on
the UCI communities and crime datasets. The numbers reported before and after ± symbolize the mean and
standard deviation, respectively. The bold values are the results with the best performance, while Oracle-
Adaptation is excluded due to being practically feasible.

Setting Weight MSE ∆Pred. MSE (%)
n Shift None KMM Ours Oracle KMM Ours

200
Mild 0.01±0.00 1.34±0.43 0.01±0.01 1.44±1.87 −24.35±29.51 0.65±2.15

Moderate 0.08±0.01 1.24±0.47 0.04±0.03 8.84±5.10 −13.32±33.03 4.93±3.76

Intense 0.33±0.02 1.24±0.61 0.14±0.04 31.06±9.16 13.72±34.91 18.41±5.20

500
Mild 0.01±0.00 1.28±0.49 0.01±0.01 0.67±1.45 −8.64±10.25 0.55±0.90

Moderate 0.08±0.00 1.23±0.54 0.04±0.02 7.05±4.17 −2.35±14.38 4.47±2.54

Intense 0.33±0.01 1.11±0.59 0.13±0.03 29.11±5.80 17.22±14.28 19.83±3.69

1000
Mild 0.01±0.00 0.92±0.31 0.01±0.01 0.68±0.71 −4.29±5.23 0.42±0.64

Moderate 0.08±0.00 0.88±0.31 0.03±0.01 6.45±2.28 −0.72±7.03 4.52±1.54

Intense 0.33±0.01 0.77±0.30 0.10±0.02 28.51±3.57 24.24±6.15 22.36±2.41

The experimental results are summarized in Table 1-2. First, in terms of weight estimation, our method
consistently outperforms KMM-Adaptation across all settings. When applied to the crime dataset, KMM-
Adaptation experiences significant estimation errors, performing much worse than Non-Adaptation. In
contrast, our method maintains low-weight MSE. Secondly, regarding response prediction, our method
consistently surpasses KMM-Adaptation, closely approaching the performance of Oracle-Adaptation across
a wide range of settings. Even though KMM-Adaptation exhibits slightly better in ∆Prediction MSE than
our method with n = 1000 and intense shift, it’s important to highlight that the corresponding standard
deviation of KMM-Adaptation is significantly higher than that of our method. Consequently, we believe that
our method consistently outperforms KMM-Adaptation.

C.4.2 EXPERIMENT WITH MNIST DATASET (POST DISTILLATION)

In this part, we aim to apply our method to the MNIST dataset to evaluate the performance of high-dimensional
image datasets. Specifically, our objective is to distill knowledge from a sophisticated teacher model, which
has been trained on an extensive labeled dataset, to a smaller student model. The student model aims to attain
comparable performance on an unlabeled dataset. This problem can be considered as a sub-task of the model
compression and knowledge distillation tasks (Xu et al., 2020; Gou et al., 2021).

In our experiment, we set up the teacher model as a convolutional neural network model with two convolution
layers and two fully connected layers. The teacher model is pre-trained with images and their true labels to
classify whether the image’s digit is odd or even. Then, we use the pre-trained teacher model to evaluate the
logits (i.e., log(p/(1− p)) where p is the probability of an image being an odd number) on the unseen images.

The image-logit pairs are used as the dataset for the student model training and evaluation, where the image is
the feature, and the logit is the continuous response. Our goal is to predict the logit using the image using
a student model. The student model is a two-layer multilayer perception; thus, it is much simpler than the
teacher model. The responses are the teacher model’s logits output so that the problem can be treated as a
regression problem.

For the purpose of student model training and evaluation, we split the image-logit datasets according to the
images’ true labels. Specifically, for an image with an odd number, the probability of assigning it to the
source data is pshift, and the probability of being assigned to the target data is 1− pshift. For an image with an
even number, the probability of being assigned to the source data is 1− pshift, and the probability of being
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assigned to the target data is pshift. If pshift = 0.5, there is no shift between the source and target. If pshift
moves away from 0.5, the shift is more severe.

We compare KMM, L2IWE and our method under different sample size and shift probability. The experi-
mental results are shown in Figure S.9. It can be seen that our method can consistently achieve good weight
estimation. Also the prediction accuracy improvement of our method is much higher than the other two
methods.
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Figure S.9: The performance comparison on MNIST dataset under different sample sizes and shift probability.
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