Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper

Authors

Hao Wang, Chenyi Zhang, Tongyang Li

Abstract

The problem of minimizing the maximum of $N$ convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring $O(N\epsilon^{-2/3} + \epsilon^{-8/3})$ queries to a first-order oracle to compute an $\epsilon$-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study of quantum algorithms and lower bounds for minimizing the maximum of $N$ convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of $\tilde{O}(\sqrt{N}\epsilon^{-5/3} + \epsilon^{-8/3})$. On the other hand, we prove that quantum algorithms must take $\tilde{\Omega}(\sqrt{N}\epsilon^{-2/3})$ queries to a first-order quantum oracle, showing that our dependence on $N$ is optimal up to poly-logarithmic factors.