Meta Inverse Constrained Reinforcement Learning: Convergence Guarantee and Generalization Analysis

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Shicheng Liu, Minghui Zhu

Abstract

This paper considers the problem of learning the reward function and constraints of an expert from few demonstrations. This problem can be considered as a meta-learning problem where we first learn meta-priors over reward functions and constraints from other distinct but related tasks and then adapt the learned meta-priors to new tasks from only few expert demonstrations. We formulate a bi-level optimization problem where the upper level aims to learn a meta-prior over reward functions and the lower level is to learn a meta-prior over constraints. We propose a novel algorithm to solve this problem and formally guarantee that the algorithm reaches the set of $\epsilon$-stationary points at the iteration complexity $O(\frac{1}{\epsilon^2})$. We also quantify the generalization error to an arbitrary new task. Experiments are used to validate that the learned meta-priors can adapt to new tasks with good performance from only few demonstrations.