Two-stage LLM Fine-tuning with Less Specialization and More Generalization

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper

Authors

Yihan Wang, Si Si, Daliang Li, Michal Lukasik, Felix Yu, Cho-Jui Hsieh, Inderjit Dhillon, Sanjiv Kumar

Abstract

Pretrained large language models (LLMs) are general purpose problem solvers applicable to a diverse set of tasks with prompts. They can be further improved towards a specific task by fine-tuning on a specialized dataset. However, fine-tuning usually makes the model narrowly specialized on this dataset with reduced general in-context learning performances, which is undesirable whenever the fine-tuned model needs to handle additional tasks where no fine-tuning data is available. In this work, we first demonstrate that fine-tuning on a single task indeed decreases LLMs' general in-context learning performance. We discover one important cause of such forgetting, format specialization, where the model overfits to the format of the fine-tuned task.We further show that format specialization happens at the very beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that reduces format specialization and improves generalization.ProMoT offloads task-specific format learning into additional and removable parameters by first doing prompt tuning and then fine-tuning the model itself with this soft prompt attached. With experiments on several fine-tuning tasks and 8 in-context evaluation tasks, we show that ProMoT achieves comparable performance on fine-tuned tasks to standard fine-tuning, but with much less loss of in-context learning performances across a board range of out-of-domain evaluation tasks. More importantly, ProMoT can even enhance generalization on in-context learning tasks that are semantically related to the fine-tuned task, e.g. ProMoT on En-Fr translation significantly improves performance on other language pairs, and ProMoT on NLI improves performance on summarization.Experiments also show that ProMoT can improve the generalization performance of multi-task training.