WizardCoder: Empowering Code Large Language Models with Evol-Instruct

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei Lin, Daxin Jiang

Abstract

Code Large Language Models (Code LLMs), such as StarCoder, have demonstrated remarkable performance in various code-related tasks. However, different from their counterparts in the general language modeling field, the technique of instruction fine-tuning remains relatively under-researched in this domain. In this paper, we present Code Evol-Instruct, a novel approach that adapts the Evol-Instruct method to the realm of code, enhancing Code LLMs to create novel models, WizardCoder. Through comprehensive experiments on five prominent code generation benchmarks, namely HumanEval, HumanEval+, MBPP, DS-1000, and MultiPL-E, our models showcase outstanding performance. They consistently outperform all other open-source Code LLMs by a significant margin. Remarkably, WizardCoder 15B even surpasses the well-known closed-source LLMs, including Anthropic's Claude and Google's Bard, on the HumanEval and HumanEval+ benchmarks. Additionally, WizardCoder 34B not only achieves a HumanEval score comparable to GPT3.5 (ChatGPT) but also surpasses it on the HumanEval+ benchmark. Furthermore, our preliminary exploration highlights the pivotal role of instruction complexity in achieving exceptional coding performance.