Matryoshka Diffusion Models

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Joshua Susskind, Navdeep Jaitly

Abstract

Diffusion models are the de-facto approach for generating high-quality images and videos, but learning high-dimensional models remains a formidable task due to computational and optimization challenges. Existing methods often resort to training cascaded models in pixel space, or using a downsampled latent space of a separately trained auto-encoder. In this paper, we introduce Matryoshka Diffusion (MDM), an end-to-end framework for high-resolution image and video synthesis. We propose a diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small-scale inputs are nested within those of large scales. In addition, MDM enables a progressive training schedule from lower to higher resolutions, which leads to significant improvements in optimization for high-resolution generation. We demonstrate the effectiveness of our approach on various benchmarks, including class-conditioned image generation, high-resolution text-to-image, and text-to-video applications. Remarkably, we can train a single pixel-space model at resolutions of up to 1024x1024 pixels, demonstrating strong zero-shot generalization using the CC12M dataset, which contains only 12 million images. Code and pre-trained checkpoints are released at https://github.com/apple/ml-mdm.