Proximal Policy Gradient Arborescence for Quality Diversity Reinforcement Learning

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Sumeet Batra, Bryon Tjanaka, Matthew Fontaine, Aleksei Petrenko, Stefanos Nikolaidis, Gaurav Sukhatme

Abstract

Training generally capable agents that thoroughly explore their environment andlearn new and diverse skills is a long-term goal of robot learning. Quality DiversityReinforcement Learning (QD-RL) is an emerging research area that blends thebest aspects of both fields – Quality Diversity (QD) provides a principled formof exploration and produces collections of behaviorally diverse agents, whileReinforcement Learning (RL) provides a powerful performance improvementoperator enabling generalization across tasks and dynamic environments. ExistingQD-RL approaches have been constrained to sample efficient, deterministic off-policy RL algorithms and/or evolution strategies and struggle with highly stochasticenvironments. In this work, we, for the first time, adapt on-policy RL, specificallyProximal Policy Optimization (PPO), to the Differentiable Quality Diversity (DQD)framework and propose several changes that enable efficient optimization anddiscovery of novel skills on high-dimensional, stochastic robotics tasks. Our newalgorithm, Proximal Policy Gradient Arborescence (PPGA), achieves state-of-the-art results, including a 4x improvement in best reward over baselines on thechallenging humanoid domain.