Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference
Kaixuan Ji, Qingyue Zhao, Jiafan He, Weitong ZHANG, Quanquan Gu
Recent studies have shown that the regret of reinforcement learning (RL) can be polylogarithmic in the planning horizon $H$. However, it remains an open question whether such a result holds for adversarial RL. In this paper, we answer this question affirmatively by proposing the first horizon-free policy search algorithm. To tackle the challenges caused by exploration and adversarially chosen reward over episodes, our algorithm employs (1) a variance-uncertainty-aware weighted least square estimator for the transition kernel; and (2) an occupancy measure-based technique for the online search of a stochastic policy. We show that our algorithm achieves an $\tilde{O}\big((d+\log |\mathcal{S}|)\sqrt{K} + d^2\big)$ regret with full-information feedback, where $d$ is the dimension of a known feature mapping linearly parametrizing the unknown transition kernel of the MDP, $K$ is the number of episodes, $|\mathcal{S}|$ is the cardinality of the state space. We also provide hardness results to justify the near optimality of our algorithm and the inevitability of $\log|\mathcal{S}|$ in the regret bound.