LLaMA-Adapter: Efficient Fine-tuning of Large Language Models with Zero-initialized Attention

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou, Pan Lu, Yu Qiao, Hongsheng Li, Gao Peng

Abstract

With the rising tide of large language models (LLMs), there has been a growing interest in developing general-purpose instruction-following models, e.g., ChatGPT. To this end, we present LLaMA-Adapter, a lightweight adaption method for efficient instruction tuning of LLaMA. Using 52K self-instruct demonstrations, LLaMA-Adapter only introduces 1.2M learnable parameters upon the frozen LLaMA 7B model, and costs less than one hour for fine-tuning. Specifically, a zero-initialized attention mechanism is proposed. It adopts a learnable zero gating to adaptively inject the instructional cues into LLaMA within self-attention layers, contributing to a stable training process and superior final performance. In this way, LLaMA-Adapter can generate high-quality responses to diverse language instructions, comparable to Alpaca with fully fine-tuned 7B parameters. Besides language commands, by incorporating an image encoder, our approach can be simply extended to a multi-modal LLM for image-conditioned instruction following, which achieves superior multi-modal reasoning capacity on several popular benchmarks (MME, MMBench, LVLM-eHub). Furthermore, we also verify the proposed zero-initialized attention mechanism for fine-tuning other pre-trained models (ViT, RoBERTa, CLIP) on traditional vision and language tasks, demonstrating the effectiveness and generalizability of our approach. Code and models are released at https://github.com/OpenGVLab/LLaMA-Adapter.