GNNCert: Deterministic Certification of Graph Neural Networks against Adversarial Perturbations

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper

Authors

Zaishuo Xia, Han Yang, Binghui Wang, Jinyuan Jia

Abstract

Graph classification, which aims to predict a label for a graph, has many real-world applications such as malware detection, fraud detection, and healthcare. However, many studies show an attacker could carefully perturb the structure and/or node features in a graph such that a graph classifier misclassifies the perturbed graph. Such vulnerability impedes the deployment of graph classification in security/safety-critical applications. Existing empirical defenses lack formal robustness guarantees and could be broken by adaptive or unknown attacks. Existing provable defenses have the following limitations: 1) they achieve sub-optimal robustness guarantees for graph structure perturbation, 2) they cannot provide robustness guarantees for arbitrarily node feature perturbations, 3) their robustness guarantees are probabilistic, meaning they could be incorrect with a non-zero probability, and 4) they incur large computation costs. We aim to address those limitations in this work. We propose GNNCert, a certified defense against both graph structure and node feature perturbations for graph classification. Our GNNCert provably predicts the same label for a graph when the number of perturbed edges and the number of nodes with perturbed features are bounded. Our results on 8 benchmark datasets show that GNNCert outperforms three state-of-the-art methods.