Symmetric Mean-field Langevin Dynamics for Distributional Minimax Problems

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper

Authors

Juno Kim, Kakei Yamamoto, Kazusato Oko, Zhuoran Yang, Taiji Suzuki

Abstract

In this paper, we extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates. We propose \emph{mean-field Langevin averaged gradient} (MFL-AG), a single-loop algorithm that implements gradient descent ascent in the distribution spaces with a novel weighted averaging, and establish average-iterate convergence to the mixed Nash equilibrium. We also study both time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result which accounts for the dependency of the particle interactions on all previous distributions. Furthermore, we propose \emph{mean-field Langevin anchored best response} (MFL-ABR), a symmetric double-loop algorithm based on best response dynamics with linear last-iterate convergence. Finally, we study applications to zero-sum Markov games and conduct simulations demonstrating long-term optimality.