Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference
Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox, Jan Peters
Sample efficiency is a crucial problem in deep reinforcement learning. Recent algorithms, such as REDQ and DroQ, found a way to improve the sample efficiency by increasing the update-to-data (UTD) ratio to 20 gradient update steps on the critic per environment sample.However, this comes at the expense of a greatly increased computational cost. To reduce this computational burden, we introduce CrossQ:A lightweight algorithm for continuous control tasks that makes careful use of Batch Normalization and removes target networks to surpass the current state-of-the-art in sample efficiency while maintaining a low UTD ratio of 1. Notably, CrossQ does not rely on advanced bias-reduction schemes used in current methods. CrossQ's contributions are threefold: (1) it matches or surpasses current state-of-the-art methods in terms of sample efficiency, (2) it substantially reduces the computational cost compared to REDQ and DroQ, (3) it is easy to implement, requiring just a few lines of code on top of SAC.