Meta-Learning Priors Using Unrolled Proximal Networks

Part of International Conference on Representation Learning 2024 (ICLR 2024) Conference

Bibtex Paper Supplementary

Authors

Yilang Zhang, Georgios B Giannakis

Abstract

Relying on prior knowledge accumulated from related tasks, meta-learning offers a powerful approach to learning a novel task from a limited number of training data. Recent approaches use a family of prior probability density functions or recurrent neural network models, whose parameters can be optimized by utilizing labeled data from the observed tasks. While these approaches have appealing empirical performance, expressiveness of their prior is relatively low, which limits generalization and interpretation of meta-learning. Aiming at expressive yet meaningful priors, this contribution puts forth a novel prior representation model that leverages the notion of algorithm unrolling. The key idea is to unroll the proximal gradient descent steps, where learnable piecewise linear functions are developed to approximate the desired proximal operators within tight theoretical error bounds established for both smooth and non-smooth proximal functions. The resultant multi-block neural network not only broadens the scope of learnable priors, but also enhances interpretability from an optimization viewpoint. Numerical tests conducted on few-shot learning datasets demonstrate markedly improved performance with flexible, visualizable, and understandable priors.