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A OVERVIEW

We first introduce the implementation details of our framework in Section B. Then the supplemen-
tary experiment results are reported in Section C, followed by more visualizations in Section D.

B IMPLEMENTATION DETAILS

B.1 TSC FEATURE EMBEDDING

In the trajectory-scene-cell (TSC) feature embedding stage, three types of TSC features are ob-
tained: trajectory cell feature, step scene cell feature, and goal scene cell feature. Every feature
type contains a scene feature embedding from a cropped scene. A trajectory cell feature contains a
scene embedding from a u × u area. A step scene cell feature contains a scene embedding of one
position from a lr × lr area. Similarly, a goal scene cell feature contains a scene embedding of one
position from a LR× LR area. As both trajectory cell and step scene cell only requires local scene
embedding, we set u = lr for simplification.

l and L determine how many cells are classified during prediction the goal/step. Empirically, we set
l = 3 and L = 15 for all experiments (different choices of L are explored in ablation study). The
selection of r and R depends on the dataset: LR should cover all goal position of trajectories in the
training set and lr should cover all next step positions of trajectories in the training set. Therefore,
the selection of r and R are listed in the Table 1.

Table 1: Selection of l, r, L, and R in different datasets with different prediction settings
Dataset Prediction Setting l r lr L R LR
SDD Short-term 3 20 60 15 80 1200

ETH-UCY Short-term 3 20 60 15 80 1200
SDD Long-term 3 60 180 15 200 3000
inD Long-term 3 24 72 15 100 1500

The TSC feature embedding stage includes one coordinate embedding network f(·) and three scene
embedding networks g(traj)(·), g(step)(·), and g(goal)(·). The coordinate embedding network f(·)
is a 3-layer MLP. Three scene embedding networks g(traj)(·), g(step)(·), and g(goal)(·) are CNNs.
The CNNs consist of 7 convolutional layers and 2-3 max-pooling layers. Different max-pooling
layers are applied depends on different r and R. Since the original size of scene is too large and
the most useful information is the semantic label instead of detailed appearance texture, the scene is
down-sampled by a factor equals to 4 before cropped and sent to the scene embedding CNNs. After
the TSC feature embedding, the dimension of each cell D = 256, where 128-dim coordinate feature
embedding and 128-dim scene feature embedding.
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B.2 GOAL PREDICTION AND TRAJECTORY COMPLETION

For all attention based encoders: history encoder, goal encoder, and step encoder, the number of
self-attention and cross-attention layers K = 2. For both CVAE decoder and step decoder, 3-layer
cell-level MLPs are applied, where features of different cells are decoded independently. In the
CVAE structure, ground truth embedding layer and CVAE encoder layer are also 3-layer cell-level
MLPs. During training, the condition is concatenated with embedded ground truth before sending
to CVAE encoder. The output of CVAE is a 64-dim latent variable for every cell, which is sent to
CVAE decoder, as well as used for KLd loss computing. When computing the reconstruction loss
for both goal and each step, the confidence reconstruction loss is computed for all cells, while the
offset reconstruction loss is only computed for the cells having the ground truth goal/step.

C ADDITIONAL EXPERIMENTAL RESULTS

For the short-term prediction, our TSC-Net is compared with more existing methods, as Shown in
Table 2.

Table 2: Additional comparison between our method and existing methods on ETH-UCY dataset
and SDD dataset. “ADE/FDE” are reported.

Methods ETH HOTEL UNIV ZARA1 ZARA2 Average SDD

P2TIRL Deo & Trivedi (2020) —— —— —— —— —— —— 10.97/12.40
CF-VAE Bhattacharyya et al. (2019) —— —— —— —— —— —— 12.60/22.30
SimAug Liang et al. (2020) —— —— —— —— —— —— 10.27/19.71
SIT Su et al. (2021) 0.38/0.88 0.11/0.21 0.20/0.46 0.16/0.37 0.12/0.27 0.19/0.44 ——
Social-BiGAT Kosaraju et al. (2019) 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00 ——
Next Liang et al. (2019) 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00 ——
STAR Yu et al. (2020) 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53 ——
Singular Bae et al. (2024) 0.35/0.42 0.13/0.19 0.25/0.44 0.19/0.32 0.15/0.25 0.21/0.32 ——
Causal-STGCNN Chen et al. (2021) 0.64/1.00 0.38/0.45 0.49/0.81 0.34/0.53 0.32/0.49 0.43/0.66 ——
CGNS Li et al. (2019) 0.62/1.40 0.70/0.93 0.48/1.22 0.32/0.59 0.35/0.71 0.49/0.97 15.60/28.20
PECNet Mangalam et al. (2020) 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48 9.96 /15.88
LB-EBM Pang et al. (2021) 0.30/0.52 0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29 0.21/0.38 8.87 /15.61
PCCSNET Sun et al. (2021) 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42 8.62 /16.16
CSCNet Xia et al. (2022) 0.51/1.05 0.22/0.42 0.36/0.81 0.31/0.68 0.47/1.02 0.37/0.79 14.63/26.91
TSC-Net (Ours) 0.32/0.39 0.12/0.19 0.25/0.46 0.17/0.30 0.15/0.26 0.20/0.32 6.44/9.97

The visualizations in our main paper show that compared to heatmap based method Y-Net Mangalam
et al. (2021), our method predict more accurate trajectories when the speed is irregular in the history
and prediction. To further demonstrate the capability of predicting trajectories with irregular speed,
velocity difference between history and future Vdiff is defined. First, one step velocity between two
neighboring frames is defined as vt = ||pt+1−pt||2. Then the history mean velocity is defined as the
average velocity of all historical frames (from frame 1 to τ ). Similarly, The future mean velocity is
the average velocity of all frames in the future (from frame τ+1 to T ). Thus, the velocity difference
Vdiff is computed by absolute difference between mean velocity of history and future, which is

Vdiff = |
∑τ

t=1 vt
τ

−
∑T

t=τ+1 vt

T − τ
|. (1)

For SDD dataset with long-term prediction setting, samples are sorted by their velocity difference,
and ADE/FDE with several velocity different thresholds are reported, where the results are shown in
Table 3. It can be observed that compared to heatmap based method Y-Net Mangalam et al. (2021),
our method significantly achieves much better FDE, especially with the largest Vdiff .

NBA SportVU dataset Linou et al. (2024) is evaluated to test the trajectory prediction in sports
scenario. This dataset contains trajectories of 10 players and a basketball for prediction, where the
5 frames (2 seconds) are observed and 10 frames (4 seconds) or prediction. The results are shown
as follow.
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Table 3: “ADE/FDE” with different Vdiff thresholds in SDD dataset with long-term prediction
setting.

Top (%) Samples with Largest Vdiff 50% 40% 30% 20% 10%

Y-Net Mangalam et al. (2021) 61.82 / 89.69 66.98 / 98.17 74.93 / 109.49 85.56 / 127.88 100.10 / 162.50
TSC-Net (Ours) 66.16 / 82.84 66.07 / 83.50 72.10 / 85.54 81.29 / 94.23 85.41 / 101.86

Table 4: Trajectory prediction in MBA dataset.

Methods MemoNet
Xu et al. (2022b)

V2-Net
Wong et al. (2022)

GroupNet
Xu et al. (2022a)

E-V2-Net-SC
Wong et al. (2024) Ours

ADE/FDE 1.25 / 1.47 1.28 / 1.68 1.13 / 1.69 1.18 / 1.46 1.24 / 1.50

Our method results in slightly larger ADE and FDE when comparing to other methods. One possible
reason is that trajectories in the NBA dataset are highly influenced by player-player interactions, as
players need to react to each other’s movements, while the scene has little influence. Our method is
designed to address feature alignment between the scene and trajectory, and its capability could be
limited when scenes are excluded.

D VISUALIZATIONS

Visualizations of predicted goal distributions for short-term and long-term predictions on SDD are
shown in Figure 1 and Figure 2 respectively. In short-term prediction setting, although trajectories
are relative smooth, our method tends to generate a goal distribution covering larger area than Y-
Net, unless for the short and straight trajectories such as the third row in Figure 1. In the long-
term prediction, our framework shows better capability than Y-Net for predicting the goal for the
trajectories with sudden change of velocity. Visualizations for long-term prediction also demonstrate
that TSC feature embedding has comparable capability of learning the relationship between scene
and trajectory to the heatmap based method Y-Net. For example, the sampled goals distributed along
the cross sidewalk in the second and third rows in Figure 2.
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Figure 1: Visualization of trajectory prediction results comparison between Y-Net and our method
on SDD dataset with short-term setting. The first column show results from Y-Net, while the second
column show results from our method. Blue and magenta curves: observed part and future part of
ground truth trajectory. Red and green dots: the ground truth goal and predicted goals.
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Figure 2: Visualization of trajectory prediction results comparison between Y-Net and our method
on SDD dataset with long-term setting. The first column show results from Y-Net, while the second
column show results from our method. Blue and magenta curves: observed part and future part of
ground truth trajectory. Red and green dots: the ground truth goal and predicted goals.
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