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1 DATASET AND CODE ACCESS

Following the instructions of NeurIPS Dataset and Benchmark Track guidelines, we have uploaded
our datasets to Hugging Face and code for constructing dataset to Github:

1. HR-Extreme: https://huggingface.co/datasets/NianRan1/
HR-Extreme

2. HR-Extreme Croissant metadata: https://huggingface.co/api/datasets/
NianRan1/HR-Extreme/croissant

3. Code: https://github.com/HuskyNian/HR-Extreme/tree/main

The access to NOAA Storm Event Database is https://www.ncdc.noaa.gov/
stormevents/ftp.jsp and NOAA Storm Prediction Center is https://www.spc.
noaa.gov/climo/reports/. Dataset and code will be available upon the acceptance of this
paper.

1.1 VARIABLE LIST

There are 69 physical variables in total included in HR-Extreme, details are explained in Table 1.
The description of each type of event included is in Table 4.

Variable Definition Unit Range

msl Mean Sea Level Pressure Pa
2t Temperature 2 m above ground K

10u U-component Wind Speed 10 m
above ground m/s

10v V-component Wind Speed 10 m
above ground m/s

hgtn Geopotential Height gpm
At 50, 100, 150, 200, 250, 300,
400, 500, 600, 700, 850, 925, 1000
millibars, 13 levels in total

u U-component Wind Speed m/s
v V-component Wind Speed m/s
t Temperature K
q Specific Humidity kg/kg

Table 1: Summary of the 69 physical variables in the dataset

1.2 DATASET STATISTICS

We calculated the means and standard deviations of the HRRR (National Oceanic and Atmospheric
Administration (NOAA), 2024) data to normalize the data before inputting it into deep learning mod-
els. These statistics are stored in a file accessible at https://huggingface.co/datasets/
NianRan1/HR-Extreme/tree/main/statistics. Our dataset repository is organized
into two distinct directories, 202001 202006 and 202007 202012, which contain data from Jan-
uary 2020 to June 2020 and from July 2020 to December 2020, respectively. Within each directory,
the dataset is stored in the WebDataset 1 format, adhering to Hugging Face’s guidelines. Specifi-
cally, every 10 npz files are aggregated into a single tar file, named sequentially as “i.tar”, where
i is an integer (e.g., “0001.tar”). Consequently, a total of 2200 files will be organized into 220 tar
files.

1.3 CODE GUIDENCE

We provide our code on GitHub for constructing the dataset, considering different usages and po-
tential future developments. The repository includes three Python scripts named make dataseti.py”,
where i is 1, 2, or 3. These scripts correspond to three data sources: events from the Storm Events

1https://github.com/webdataset/webdataset
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Database (National Centers for Environmental Information (NCEI), 2024), events from the Storm
Prediction Center (National Oceanic and Atmospheric Administration (NOAA), Storm Prediction
Center (SPC), 2024), and excessive heat and cold events filtered manually, respectively. Users,
however, need only utilize “make datasetall.py”, supplying start and end dates to generate a com-
prehensive index file. This index file delineates the events, including their types, bounding box
indices, event start and end times, and details of event spans if multiple types are involved. For
instance, executing “python make datasetall.py 20200101 20200630” will produce an index file
named “data 20200101 20200630 info.csv” within the “index files” directory, ready for generat-
ing bounding boxes from HRRR data.

It is important to note that users must first download a storm event details CSV file from the Storm
Events Database 2, specifically the StormEvents details-ftp v1.0 year cdate.csv.gz” file, and place
it in the “index files” directory before executing any of the Python scripts. Users should ensure they
download the storm event details files, rather than location or other types of files, and confirm that
these files cover the dates of the dataset they intend to create.

1.4 TARGET AUDIENCE

HR-Extreme is a dataset encompassing 17 types of extreme weather events for the year 2020, de-
rived from HRRR (National Oceanic and Atmospheric Administration (NOAA), 2024) data. Users
can conveniently extend this dataset using the provided code interface. The dataset is intended for
a wide range of researchers in the field of weather forecasting, including those utilizing physical
methods and deep learning techniques. Given the critical importance of accurately predicting ex-
treme weather events in weather forecasting, it is imperative that researchers evaluate their models
using this dataset. This evaluation will help to identify the strengths and weaknesses of their models
and assess their practical applicability. While most previous studies in deep learning have focused
on ERA5 (Hersbach et al., 2020) data, models can be readily adapted to work with HRRR data as
well.

1.5 LICENSES

The license of NOAA HRRR data is U.S Government Work 3, which means they can be used by
anyone for any purpose without seeking permission or paying royalties.

1.6 AUTHOR STATEMENT

As the authors of the HR-Extreme dataset, we bear full responsibility for any violations of rights and
confirm that the dataset is released under the appropriate data license. The data has been compiled
and shared in accordance with the relevant guidelines and regulations.

2 EXPERIMENT MODELS

2.1 NWP

The Numerical Weather Prediction (NWP) (Olson et al., 2022) system for predicting High-
Resolution Rapid Refresh (HRRR) data is a sophisticated model that leverages high-performance
computing to simulate atmospheric conditions with fine temporal and spatial resolution. HRRR
is a real-time 3-km resolution, hourly updated, cloud-resolving, convection-allowing atmospheric
model, initialized by 3-km grids with 3-km radar assimilation. It is designed to provide detailed fore-
casts over the contiguous United States for short-term predictions up to 18 hours. The HRRR system
integrates a variety of data sources, including radar, satellite, and surface observations, to continu-
ously update its predictions. It employs advanced physics parameterizations to accurately represent
processes such as convection, cloud formation, and precipitation. By using a high-resolution grid,
HRRR is able to capture small-scale weather phenomena, such as thunderstorms and tornadoes, with
greater accuracy. The model’s outputs are crucial for various applications, including aviation, re-

2https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles/
3https://registry.opendata.aws/noaa-hrrr-pds/
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newable energy, and severe weather forecasting, providing timely and precise information to support
decision-making and public safety.

2.2 PANGU

The Pangu-Weather (Bi et al., 2023) model is an deep learning-based weather forecasting sys-
tem that employs a three-dimensional deep neural network architecture designed specifically for
Earth’s unique geospatial features. The core of Pangu-Weather is the 3D Earth-specific transformer
(3DEST), which incorporates height information as an additional dimension, allowing the model
to effectively capture atmospheric states across various pressure levels. This architecture uses an
encoder-decoder structure derived from the Swin transformer (Liu et al., 2021), with enhancements
such as Earth-specific positional biases to handle geospatial relationships more accurately.

To make predictions, Pangu-Weather takes reanalysis weather data as input and processes it through
a hierarchical temporal aggregation strategy. This strategy trains multiple models with varying lead
times (1 hour, 3 hours, 6 hours, and 24 hours) and uses a greedy algorithm during inference to
minimize the number of iterations required for medium-range forecasts. By iteratively using forecast
results as new inputs, the model reduces cumulative errors and improves accuracy. The combination
of 3D spatial awareness and hierarchical temporal aggregation enables Pangu-Weather to produce
faster and more accurate weather forecasts, outperforming traditional numerical weather prediction
systems like the ECMWF’s IFS in various metrics including root mean square error (RMSE) and
anomaly correlation coefficient (ACC).

2.3 FUXI

The Fuxi (Chen et al., 2023) model is another deep learning-based weather forecasting system that
employs a cascaded architecture to generate 15-day global forecasts with a temporal resolution of
6 hours and a spatial resolution of 0.25°. This model is built on the U-Transformer architecture,
which effectively captures complex spatiotemporal relationships in high-dimensional weather data.
The system uses a pre-trained base model, which is fine-tuned for specific forecast time windows:
0-5 days, 5-10 days, and 10-15 days. By cascading these models, Fuxi reduces error accumulation
and enhances forecast accuracy over longer periods. The model was trained on 39 years of ECMWF
ERA5 (Hersbach et al., 2020) reanalysis data. During inference, Fuxi utilizes an autoregressive
approach where the outputs of one model serve as inputs for the next, significantly extending the
skillful forecast lead time. Additionally, Fuxi employs ensemble forecasting by perturbing initial
conditions and model parameters, providing a measure of forecast uncertainty and demonstrating
performance comparable to the ECMWF ensemble mean for the 15-day forecast horizon.

2.4 HR-HEIM

HR-Heim The architecture of HR-Heim follows a conventional structure with an encoder, a series
of transformer layers, and a decoder, inspired by the FuXi architecture (Chen et al., 2023). For the
encoder, we utilize causal convolutions from MagViTv2 to capture spatial-temporal input (Yu et al.,
2023). The transformer segment consists of multiple stacked SwinTransformer blocks (Liu et al.,
2022). Unlike typical Vision Transformer decoders that use a simple MLP with 1 × 1 convolution,
which can hinder resolution, our decoder progressively upscales the feature map from H

h × W
w to

the target size H ×W through a series of steps. Each step resolves details at its specific resolution
level, incorporating convolutional layers and upsampling operations to enhance prediction quality.

Decoder Grouping by Variable Types In the context of a multi-task formulation, the optimal ap-
proach for performance would typically involve training a separate model for each subtask. How-
ever, this becomes inefficient and scales poorly during training and inference when dealing with
hundreds of physical variables. To address this, we propose a shared backbone for feature extraction
and temporal modeling, which we assume to be universally applicable for predicting any physical
variables. We then separate multiple decoding heads for different variables.

To further enhance efficiency, we categorize the subtasks into several groups, assigning a decod-
ing head to each. The grouping principle aims to minimize negative transfer within each group.
For example, during training, the gradients of subtask A and subtask B often point in conflicting
directions.
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Following previous work, we train a simple model that shares all parameters and assesses conflicts
and alignment between each pair of subtasks during training. Specifically, we compute the cosine
similarity of the gradients of each pair of subtasks to obtain an affinity matrix.

Ẑij =
1

T

T∑
t=1

git · g
j
t∥∥git∥∥2 ∥∥∥gjt∥∥∥2 (1)

Here, git represents the flattened gradient from the loss of the ith subtask. Interestingly, we find that
variables of the same type but at consecutive pressure levels (e.g., t 100 and t 120) align better than
those of the same pressure level but different types (e.g., t100 and h100). Consequently, each group
contains only one type of variable, and we determine which pressure levels to group together by
maximizing the inner group affinity.

3 MODEL EVALUATIONS

3.1 METRICS

The Root Mean Square Error (RMSE) is a commonly used metric to measure the difference between
values predicted by a model and the values actually observed. It is defined as the square root of the
mean of the squared differences between the predicted and observed values.

Mathematically, RMSE is expressed as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where n is the number of observations, yi is the observed value, ŷi is the predicted value. The RMSE
value provides a measure of how well a model predicts the outcome variable. Lower RMSE values
indicate better fit, meaning the predicted values are closer to the observed values.

3.2 RESULTS

Our full results are included in Table 2 and Table 3, showing the RMSE for each variable predicted
by each model.

4 DATASHEET

4.1 MOTIVATION

1. For what purpose was the dataset created? We propose HR-Extreme, a dataset with
high-resolution feature maps of physical variables for evaluating cutting-edge models in
extreme weather prediction. This crucial aspect has been overlooked and undervalued in
previous work, and there is a lack of dedicated high-resolution datasets for extreme weather
forecasting.

2. Who created the dataset and on behalf of which entity? The dataset was developed by
a consortium of ML researchers and climate scientists listed in the author list.

3. Who funded the creation of the dataset? Self-funded.

4.2 DISTRIBUTION

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, it is open
the public.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The
dataset will be distributed in Hugging Face, and code for constructing the dataset held in
Github.

5
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3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No.

4.3 MAINTENANCE

1. Who will be supporting/hosting/maintaining the dataset? The authors of this paper.

2. How can the owner/curator/manager of the dataset be contacted(e.g., email ad-
dress)? The owner/curator/manager of the dataset can be contacted by Nian Ran
(r992988188@gmail.com).

3. Is there an erratum No. If errors are found in the future, we will release errata on the
Github page: https://github.com/HuskyNian/HR-Extreme/tree/main.

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, we will update our dataset whenever necessary to ensure accuracy, and
announcements will be made accordingly. The updates will be shown in our Github page:
https://github.com/HuskyNian/HR-Extreme/tree/main.

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?) N/A

6. Will older version of the dataset continue to supported/hosted/maintained?Yes, they
will be still available and easy to reproduce by our provided code.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anisms for them to do so? Yes, they can use our provided code on (https://github.
com/HuskyNian/HR-Extreme/tree/main), we have provided full instructions in
our paper and this material.

4.4 COMPOSITION

1. What do the instance that comprise the dataset represent (e.g., documents, photos,
people, countries?) Each instance is the feature maps with 320 in width and 320 in height,
and 69 channels, which representing 69 physical variables as shown in Table 1. This ar-
eas are cropped from HRRR (National Oceanic and Atmospheric Administration (NOAA),
2024) data.

2. How many instances are there in total (of each type, if appropriate)? There are 22,774
files accounting for the period of July 2020 to December 2020, and 34,196 files for the
period of January 2020 to June 2020.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? Our dataset contains all possible instances in entire 2020. Users can use our
code to extend to more years depending on their needs.

4. Is there a label or target associated with each instance? Yes, after loading a file by
Numpy library, users can use keys “inputs” to retrieve inputs and “targets” to retrieve
targets and “mask” to retrieve mask for that case.

5. . Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)?
Considering the computational and memory requirements, we recommend using the data
from July 2020 to December 2020 for evaluation. Our evaluation results are based on this
subset.

7. Are there any errors, sources of noise, or redundancies in the dataset? Because our
dataset is primarily based on user reports, there may be noise and errors in the range and
span of each extreme event case. To mitigate these errors, we have increased the range of
each case.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.
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9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

4.5 COLLECTION PROCESS

1. How was the data associated with each instance acquired? Each instance is cropped
from HRRR (National Oceanic and Atmospheric Administration (NOAA), 2024) by a
prepared index file, the index file is constructed by data from NOAA Storm Event
Database (https://www.ncdc.noaa.gov/stormevents/ftp.jsp) and NOAA
Storm Prediction Center (https://www.spc.noaa.gov/climo/reports/).

2. What mechanisms or procedures were used to collect the data (e.g., hardware appara-
tus or sensor, manual human curation, software program, software API)? We use many
CPU nodes to to process the data with Python libraries to access HRRR data. Users are
recommended to first download ground true HRRR data in a storage for easy and frequent
access.

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Regular students and employees are involved, no crowdworkers are involved.

4. Does the dataset relate to people? No.

5. Did you collect the data from the individuals in questions directly, or obtain it via third
parties or other sources (e.g., websites)? We obtained the dataset from open resource
HRRR (National Oceanic and Atmospheric Administration (NOAA), 2024) data.

4.6 USES

1. Has the dataset been used for any tasks already? No, this dataset has only been evalu-
ated on some models explained in the paper.

2. What (other) tasks could be the dataset be used for? Apart from evaluation, it can be
used a finetune dataset for deep learning models.

3. Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? The varibale choices
can impact the future use. But so far the variables chosen are diverse and sufficient for
evaluating extreme weather.

4. Are there tasks for which the dataset should not be used? No.

5 ADDITIONAL FIGURES AND TABLES
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Figure 1: An example plot of the variable “temeprature 2 meters above ground” of HRRR data on U.S.

Figure 2: More examples: the mean error heatmap of all variables predicted by HR-Heim on entire U.S. on 8
p.m., 15 August. Bright area means larger avaergae loss. They are captured by the bounding boxes representing
the extreme weather that is happening.
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Variable

HR-
Heim

General
Loss

HR-
Heim
HR-

Extreme
Loss

Pangu
General

Loss

Pangu
HR-

Extreme
Loss

FuXi
General

Loss

FuXi
HR-

Extreme
Loss

NWP
General

Loss

NWP
HR-

Extreme
Loss

msl 27.00 27.88 37.09 36.06 40.48 78.61 60.30 80.07
2t 0.40 0.47 0.81 0.74 0.86 1.63 0.52 1.19

10u 0.59 0.75 0.81 0.90 0.78 1.09 0.89 1.32
10v 0.59 0.77 0.82 0.93 0.78 1.12 0.89 1.36

hgtn 5000 6.48 6.80 8.35 8.53 10.25 25.09 8.05 10.58
hgtn 10000 5.32 5.93 6.87 7.39 9.54 28.76 7.04 8.56
hgtn 15000 5.14 5.80 6.55 7.15 10.70 35.26 6.83 8.22
hgtn 20000 4.77 5.54 6.77 7.53 10.54 36.72 6.50 8.12
hgtn 25000 4.32 5.10 5.76 272.94 9.84 34.94 6.12 7.80
hgtn 30000 3.95 4.69 5.19 14.26 9.01 30.41 5.82 7.38
hgtn 40000 3.30 3.93 4.31 17.91 7.38 22.87 5.37 6.84
hgtn 50000 2.85 3.39 4.06 13.11 5.95 18.27 5.18 6.73
hgtn 60000 2.58 3.02 3.35 10.66 4.98 14.14 5.11 6.64
hgtn 70000 2.40 2.69 3.05 83.58 4.21 10.82 5.06 6.42
hgtn 85000 2.27 2.44 2.88 28.27 3.45 7.05 5.06 6.51
hgtn 92500 2.31 2.44 3.24 39.93 3.40 6.46 5.15 6.86
hgtn 100000 2.26 2.37 46.46 44.29 3.41 6.46 5.10 6.90

u 5000 0.49 0.52 0.71 0.69 0.75 1.32 0.48 0.93
u 10000 0.47 0.55 0.69 0.74 0.76 1.69 0.49 1.03
u 15000 0.67 0.83 0.90 1.06 0.97 2.34 0.73 1.45
u 20000 0.96 1.20 1.27 1.84 1.35 2.95 1.08 1.96
u 25000 0.92 1.14 1.22 13.53 1.35 3.02 1.03 1.89
u 30000 0.83 1.04 1.09 3.14 1.24 2.71 0.91 1.67
u 40000 0.69 0.93 0.91 3.55 1.03 2.38 0.75 1.42
u 50000 0.62 0.93 0.89 2.94 0.89 2.20 0.70 1.42
u 60000 0.58 0.89 0.80 2.75 0.82 1.87 0.68 1.39
u 70000 0.59 0.88 0.79 6.60 0.80 1.70 0.69 1.36
u 85000 0.59 0.89 0.78 4.37 0.79 1.57 0.73 1.40
u 92500 0.55 0.86 1.28 4.15 0.73 1.44 0.72 1.42

u 100000 0.45 0.60 3.12 2.64 0.57 0.96 0.63 1.04
v 5000 0.52 0.53 0.71 0.68 0.65 0.86 0.47 0.95

v 10000 0.47 0.54 0.67 0.70 0.70 1.21 0.47 1.00
v 15000 0.68 0.82 0.89 1.03 0.96 1.97 0.72 1.43
v 20000 0.98 1.19 1.28 1.90 1.34 2.69 1.07 1.95
v 25000 0.94 1.13 1.25 11.74 1.36 2.63 1.04 1.92
v 30000 0.84 1.03 1.11 3.10 1.25 2.38 0.92 1.72
v 40000 0.70 0.93 0.93 3.64 1.02 2.06 0.76 1.48

Table 2: Losses of each variable for each model
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Variable

HR-
Heim

General
Loss

HR-
Heim
HR-

Extreme
Loss

Pangu
General

Loss

Pangu
HR-

Extreme
Loss

FuXi
General

Loss

FuXi
HR-

Extreme
Loss

NWP
General

Loss

NWP
HR-

Extreme
Loss

v 50000 0.63 0.94 0.90 3.06 0.90 1.92 0.71 1.48
v 60000 0.59 0.91 0.81 2.82 0.82 1.77 0.68 1.45
v 70000 0.60 0.90 0.81 6.52 0.80 1.60 0.69 1.40
v 85000 0.60 0.91 0.80 4.78 0.80 1.60 0.74 1.43
v 92500 0.57 0.88 1.36 4.80 0.76 1.52 0.74 1.47

v 100000 0.46 0.62 4.04 3.34 0.60 1.01 0.65 1.08
t 5000 0.32 0.35 0.43 0.43 0.51 0.63 0.29 0.63

t 10000 0.24 0.29 0.35 0.39 0.41 0.90 0.25 0.57
t 15000 0.23 0.29 0.33 0.36 0.36 0.82 0.26 0.49
t 20000 0.31 0.34 0.41 0.46 0.43 0.63 0.35 0.43
t 25000 0.25 0.28 0.34 5.42 0.38 0.83 0.29 0.38
t 30000 0.21 0.26 0.28 1.29 0.34 0.92 0.25 0.39
t 40000 0.21 0.28 0.28 1.57 0.35 0.96 0.25 0.43
t 50000 0.19 0.27 0.31 1.43 0.35 0.89 0.24 0.44
t 60000 0.18 0.26 0.28 1.47 0.33 0.87 0.22 0.43
t 70000 0.21 0.30 0.30 7.29 0.38 0.98 0.26 0.51
t 85000 0.28 0.35 0.44 2.64 0.49 1.15 0.38 0.65
t 92500 0.31 0.37 1.05 3.02 0.53 1.20 0.43 0.75
t 100000 0.29 0.36 9.79 3.11 0.52 1.19 0.48 0.95
q 5000 6.30e-08 5.61e-08 7.99e-08 6.99e-08 8.89e-08 1.49e-07 5.03e-08 5.51e-08

q 10000 1.87e-07 3.86e-07 2.42e-07 3.66e-07 4.20e-07 6.99e-07 4.45e-07 6.63e-07
q 15000 6.13e-07 1.17e-06 7.38e-07 1.18e-06 8.85e-07 1.66e-06 9.66e-07 2.13e-06
q 20000 3.02e-06 5.68e-06 3.86e-06 7.74e-06 3.94e-06 8.34e-06 4.73e-06 1.05e-05
q 25000 9.16e-06 1.72e-05 1.17e-05 9.99e-05 1.21e-05 2.72e-05 1.47e-05 3.31e-05
q 30000 2.03e-05 3.85e-05 2.58e-05 1.02e-04 2.70e-05 6.43e-05 3.17e-05 7.52e-05
q 40000 5.82e-05 1.13e-04 7.41e-05 3.92e-04 7.71e-05 1.93e-04 8.62e-05 2.15e-04
q 50000 1.13e-04 2.16e-04 1.53e-04 7.44e-04 1.46e-04 3.74e-04 1.56e-04 3.72e-04
q 60000 1.79e-04 3.34e-04 2.23e-04 1.05e-03 2.26e-04 5.60e-04 2.32e-04 5.10e-04
q 70000 2.56e-04 4.76e-04 3.14e-04 3.60e-03 3.20e-04 7.35e-04 3.22e-04 6.76e-04
q 85000 4.13e-04 6.60e-04 5.04e-04 3.27e-03 5.02e-04 9.85e-04 4.83e-04 9.04e-04
q 92500 4.57e-04 5.77e-04 1.28e-03 3.37e-03 5.78e-04 1.03e-03 5.44e-04 8.06e-04

q 100000 3.59e-04 4.32e-04 5.13e-03 2.44e-03 4.97e-04 9.81e-04 4.99e-04 8.01e-04

Table 3: Losses of each variable for each model, follow Table 2
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Variable Definition

Debris Flow
May be triggered by intense rain after wildfires. A slurry of loose soil, rock, organic

matter, and water, similar to wet concrete, which is capable of holding particles larger
than gravel in suspension.

Flash Flood
A life-threatening, rapid rise of water into a normally dry area beginning within

minutes to multiple hours of the causative event (e.g., intense rainfall, dam failure, ice
jam).

Flood
Any high flow, overflow, or inundation by water which causes damage. In general, this
would mean the inundation of a normally dry area caused by an increased water level

in an established watercourse, or ponding of water, associated with heavy rainfall

Funnel Cloud

A rotating, visible extension of a cloud pendant from a convective cloud with
circulation not reaching the ground. It is a precursor to more severe weather events.

The wind shear caused by it (sudden changes in wind speed and direction) will
endanger aviation.

Hail Frozen precipitation in the form of balls or irregular lumps of ice.

Heavy Rain Unusually large amount of rain which does not cause a Flash Flood or Flood event, but
causes damage

Lightning A sudden electrical discharge from a thunderstorm, resulting in a fatality, injury, and/or
damage

Marine Hail Hail 3/4 of an inch in diameter or larger, occurring over the waters and bays of the
ocean, Great Lakes, and other lakes with assigned specific Marine Forecast Zones

Marine High
Wind

Non-convective, sustained winds or frequent gusts of 48 knots (55 mph) or more,
resulting in a fatality, injury, or damage, over the waters and bays of the ocean, Great

Lakes, and other lakes with assigned specific Marine Forecast Zones.

Marine Strong
Wind

Non-convective, sustained winds or frequent gusts up to 47 knots (54 mph), resulting
in a fatality, injury, or damage, occurring over the waters and bays of the ocean, Great

Lakes, and other lakes with assigned specific Marine Forecast Zones.
Marine

Thunderstorm
Wind

Winds, associated with thunderstorms, occurring over the waters and bays of the
ocean, Great Lakes, and other lakes with assigned specific Marine Forecast Zones with

speeds of at least 34 knots (39 mph) for 2 hours or less.

Thunderstorm
Wind

Winds, arising from convection (occurring within 30 minutes of lightning being
observed or detected), with speeds of at least 50 knots (58 mph), or winds of any speed

(non-severe thunderstorm winds below 50 knots)

Tornado
A violently rotating column of air, extending to or from a cumuliform cloud or

underneath a cumuliform cloud, to the ground, and often (but not always) visible as a
condensation funnel.

Waterspout
A rotating column of air, pendant from a convective cloud, with its circulation

extending from cloud base to the water surface of bays and waters of the Great Lakes,
and other lakes with assigned Marine Forecast Zones.

Wind
Severe thunderstorm wind, strong wind that causes damage, which is reported and
recorded by NOAA Storm Prediction Center (National Oceanic and Atmospheric

Administration (NOAA), Storm Prediction Center (SPC), 2024).

Heat Large area of excessive heat above 37 degrees celsius in US during daytime, manually
filtered.

Cold Large area of excessive cold below -29 degress celsius in US during nighttime,
manually filtered.

Table 4: Explaination of each type of extreme weather included in HR-Extreme
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