Under review as a conference paper at ICLR 2025

A FURTHER DETAILS ON THE EXPERIMENTAL SETUP

A.1 TASK DESCRIPTIONS

We consider a total of 8 continuous control tasks from 2 benchmarks: ManiSkill (Mu et al., 2021),
and Adroit (Rajeswaran et al., 2017). This section provides detailed task descriptions on overall
information, task difficulty, object sets, state space, and action space. Some task details are listed in
Table 2.

A.1.1 MANISKILL TASKS

For all tasks we evaluated on ManiSkill benchmark, we use consistent setup for state space, and
action space. The state spaces adhere to a standardized template that includes proprioceptive robot
state information, such as joint angles and velocities of the robot arm, and, if applicable, the mobile
base. Additionally, task-specific goal information is included within the state. ManiSkill tasks we
evaluated are very challenging because two of them require precise control and another two involve
object variations. Below, we present the key details pertaining to the tasks used in this paper.

Stack Cube

* Overall Description: Pick up a red cube and place it onto a green one.

* Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the red cube
and accurately place it onto the green one.

* Object Variations: No object variations.
* Action Space: Delta position of the end-effector and joint positions of the gripper.

« State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Peg Insertion Side

* Overall Description: Insert a peg into the horizontal hole in a box.

 Task Difficulty: This task requires precise control. The gripper needs to firmly grasp the peg,
perfectly aligns it horizontally to the hole, and inserts it.

* Object Variations: The box geometry is randomly generated
* Action Space: Delta pose of the end-effector and joint positions of the gripper.

« State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, and task-specific goal information.

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Turn Faucet

 Overall Description: Turn on a faucet by rotating its handle.

» Task Difficulty: This task needs to handle object variations. The dataset contains trajectories of 10
faucet types, while in online interactions, the agent needs to deal with 3 novel faucets not present
in the dataset. See Fig 12.

* Object Variations: We have a source environment containing 10 faucets, and the dataset is collected
in the source environment. The agent interacts with the target environment online, which contains
3 novel faucets.

* Action Space: Delta pose of the end-effector and joint positions of the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, the mobile base, and task-specific goal information.

16



Under review as a conference paper at ICLR 2025

* Visual Observation Space: one 64x64 RGBD image from a base camera and one 64x64 RGBD
image from a hand camera.

Push Chair

e Overall Description: A dual-arm mobile robot needs to push a swivel chair to a target location
on the ground (indicated by a red hemisphere) and prevent it from falling over. The friction and
damping parameters for the chair joints are randomized.

* Task Difficulty: This task needs to handle object variations. The dataset contains trajectories of 5
chair types, while in online interactions, the agent needs to deal with 3 novel chairs not present in
the dataset. See Fig 12.

* Object Variations: We have a source environment containing 5 chairs, and the dataset is collected
in the source environment. The agent interacts with the target environment online, which contains
3 novel chairs.

* Action Space: Joint velocities of the robot arm joints and mobile robot base, and joint positions of
the gripper.

* State Observation Space: Proprioceptive robot state information, such as joint angles and velocities
of the robot arm, task-specific goal information.

* Visual Observation Space: three 50x125 RGBD images from three cameras 120° apart from each
other mounted on the robot.

Source Environment Target Environment

Turn Faucet

Push Chair

Figure 12: For the Turn Faucet and Push Chair tasks in the ManiSkill benchmark, we have a source
environment with various object variations from which the dataset is collected. The agent interacts
with a target environment that features novel object variations. Please refer to the information above
for specific details.

A.1.2 ADROIT TASKS

Adroit Door

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree
of freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of
freedom arm. The task to be completed consists on undoing the latch and swing the door open.

 Task Difficulty: The latch has significant dry friction and a bias torque that forces the door to
stay closed. No information about the latch is explicitly provided. The position of the door is
randomized.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

17



Under review as a conference paper at ICLR 2025

« State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as state of the latch and door.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Pen

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on repositioning the blue pen to match the orientation of
the green target.

* Task Difficulty: The target is also randomized to cover all configurations.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as the pose of the real pen and target goal.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Hammer

* Overall Description: The environment is based on the Adroit manipulation platform, a 28 degree of
freedom system which consists of a 24 degrees of freedom ShadowHand and a 4 degree of freedom
arm. The task to be completed consists on picking up a hammer with and drive a nail into a board.

* Task Difficulty: The nail position is randomized and has dry friction capable of absorbing up to
15N force.

* Object Variations: No object variations.
* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
the pose of the hammer and nail, and external forces on the nail.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

Adroit Relocate

* Overall Description: The environment is based on the Adroit manipulation platform, a 30 degree
of freedom system which consists of a 24 degrees of freedom ShadowHand and a 6 degree of
freedom arm. The task to be completed consists on moving the blue ball to the green target.

« Task Difficulty: The positions of the ball and target are randomized over the entire workspace.

* Object Variations: No object variations.

* Action Space: Absolute angular positions of the Adroit hand joints.

* State Observation Space: The angular position of the finger joints, the pose of the palm of the hand,
as well as kinematic information about the ball and target.

* Visual Observation Space: one 128x128 RGB image from a third-person view camera.

18



Under review as a conference paper at ICLR 2025

Table 2: We consider 8 continuous control tasks from 2 benchmarks. We list important task details

below.
Task State Observation Dim  Action Dim  Max Episode Step
ManiSkill: StackCube 55 4 200
ManiSkill: PeglnsertionSide 50 7 200
ManiSkill: TurnFaucet 43 7 200
ManiSkill: PushChair 131 20 200
Adroit: Door 39 28 300
Adroit: Pen 46 24 200
Adroit: Hammer 46 26 400
Adroit: Relocate 39 30 400

A.2 DEMONSTRATIONS

This subsection provides the details of demonstrations used in our experiments. See Table 3. Man-
iSkill demonstrations are provided in Gu et al. (2023), and Adroit demonstrations are provided in

Rajeswaran et al. (2017).

Table 3: We list the number of demonstrations and corresponding generation methods below.

Task Num of Demo Trajectories Generation Method
ManiSkill: StackCube 1000 Task and Motion Planning
ManiSkill: PeglnsertionSide 1000 Task and Motion Planning
ManiSkill: TurnFaucet 1000 Model Predictive Control
ManiSkill: PushChair 1000 Reinforcement Learning
Adroit: Door 25 Human Teleoperation
Adroit: Pen 25 Human Teleoperation
Adroit: Hammer 25 Human Teleoperation
Adroit: Relocate 25 Human Teleoperation

B IMPLEMENTATION DETAILS

B.1 BASE POLICIES

We experiment with 2 state-of-the-art imitation learning models: Behavior Transformer and Diffusion

Policy.

B.1.1 BEHAVIOR TRANSFORMER

We follow the setup of Behavior Transformer in the original paper (Shafiullah et al., 2022). The
architecture hyperparameters are included in Table 4, and the training hyperparameters are included

in Table 5.

19



Under review as a conference paper at ICLR 2025

Table 4: We list the important architecture hyperparameters of Behavior Transformer used in our
experiments.

Hyperparameter Value

Context Window 10/20

Num Clusters 4/8

Num Layers 4

Num Heads 4
Embedding Dimensions 128

Trainable Parameters approximately 1 Million

Table 5: We list the important training hyperparameters of Behavior Transformer in ManiSkill and
Adroit tasks below.

Hyperparameter Value (ManiSkill) Value (Adroit)
Gradient Steps 200000 5000

Batch Size 2048 20438

Learning Rate le-4 le-4

Evaluation Frequency 100 episodes every 5000 steps 100 episodes every 100 steps
Optimizer AdamW Optimizer AdamW Optimizer

B.1.2 DIFFUSION PoOLICY

We follow the setup of U-Net version of Diffusion Policy in the original paper (Chi et al., 2023). The
architecture hyperparameters are includes in Table 6, and the training hyperparameters are included
in Table 7.

Table 6: We list the important architecture hyperparameters of Diffusion Policy used in our experi-
ments.

Hyperparameter Value

Action Horizon 4
Observation Horizon 2

Prediction Horizon 16
Embedding Dimensions 64
Downsampling Dimensions 256, 512, 1024
Trainable Parameters approximately 4 Million

Table 7: We list the important training hyperparameters of Diffusion Policy in ManiSkill and Adroit
tasks below.

Hyperparameter Value (ManiSkill) Value (Adroit)
Gradient Steps 200000 200000

Batch Size 1024 1024

Learning Rate le-4 le-4

Evaluation Frequency 100 episodes every 5000 steps 100 episodes every 5000 steps
Optimizer AdamW Optimizer AdamW Optimizer

20



Under review as a conference paper at ICLR 2025

B.1.3 CHECKPOINT SELECTION

We evaluate the base policy for 50 episodes every specific number of gradient steps during training.
We select the checkpoint with the highest evaluation success rate.

B.2 PoLICY DECORATOR (OUR APPROACH)

Policy Decorator framework introduces two key hyperparameters: H in Progressive Exploration
Schedule and Bound « of Residual Actions. We list the values of these two key hyperparameters
across all tasks in the table below. Both of them are not too difficult to tune. We typically set « close
to the action scale observed in the demonstration dataset and make minor adjustments. H has a wide
workable range, and using a large H is generally a safe choice if sample efficiency is not the primary
concern. See Section 5.4.2 for more disccusion on the influence of these two hyperparameters.

Table 8: The values of H in Progressive Exploration Schedule and Bound o of Residual Actions
across all tasks.

Task H «

ManiSkill: StackCube (BeT, state) 1M 0.03
ManiSkill: PeglnsertionSide (BeT, state) M 1.0
ManiSKkill: TurnFaucet (BeT, state) 500K 0.2
ManiSkill: PushChair (BeT, state) IiM 0.2
Adroit: Door (BeT, state) 100K 0.3
Adroit: Pen (BeT, state) 100K 0.3
Adroit: Hammer (BeT, state) 100K 0.3
Adroit: Relocate (BeT, state) 100K 0.2
ManiSkill: PeglnsertionSide (Diffusion Policy, state) 30K  0.03
ManiSkill: TurnFaucet (Diffusion Policy, state) 100K 0.1
ManiSkill: PushChair (Diffusion Policy, state) 100K 0.2
Adroit: Pen (Diffusion Policy, state) 100K 0.2
Adroit: Hammer (Diffusion Policy, state) 100K 0.1
Adroit: Relocate (Diffusion Policy, state) 300K 0.1
ManiSkill: TurnFaucet (Diffusion Policy, visual) 30K 0.05
ManiSkill: PushChair (Diffusion Policy, visual) 100K 0.2
Adroit: Door (Diffusion Policy, visual) 1M 0.1
Adroit Pen (Diffusion Policy, visual) 100K 0.8

B.3 IMPORTANT SHARED HYPERPRAMETERS AMONG POLICY DECORATOR AND OTHER
BASELINES

As all baselines use SAC as the backbone RL algorithm, we include some important shared hyper-
parameters used among the Policy Decorator and baselines in our experiments. See the Table 9 for
more details.

21



Under review as a conference paper at ICLR 2025

Table 9: We list the important shared hyperparameters among Policy Decorator and other baselines in
ManiSkill and Adroit tasks below.

Hyperparameter Value (ManiSkill)  Value (Adroit)
Gamma 0.90 0.97
Batch Size 1024 1024
Learning Rate le-4 le-4
Policy Update Frequency 1 1
Training Frequency 64 64
Update-to-data Ratio 0.25 0.25
Target Network Update Frequency 1 1

Tau 0.01 0.01
Learning Starts 8000 8000

B.4 ENABLE RL FINE-TUNING ON BASE POLICIES

B.4.1 SAC FOR BEHAVIOR TRANSFORMER

Special Modifications on BeT Special adaptations relate to SAC’s Gaussian Tanh Policy, which
requires the actor backbone to output in the ATANH space of action rather than the regular space. This
requirement complicates the initialization of the Behavior Transformer (BeT) as the actor backbone.
Therefore, we allow the clustering process in BeT to operate in the regular action space, but the
regression head outputs in the ATANH action space. The final action is then computed as:

Afinal = arCtanh(abin) + Aregression output

Since the atanh function is defined between -1 and 1, some action dimensions (e.g., gripper actions)
need to be scaled to avoid numerical issues. In ManiSkill, we multiply the gripper dimension (last
action dimension) by 0.3; in Adroit, we multiply all actions by 0.5. The actions are rescaled back
after going through tanh. Our BeT, specially modified for fine-tuning, achieves similar performance
in evaluations in order to enable fair comparison. See Table 10 for evaluation success rate of BeT and
BeT modified version in ManiSkill and Adroit tasks.

Following the general paradigm of fine-tuning GPT-based models in natural language processing, we
add LoRA to all attention layers and final regression heads.

Table 10: We list the evaluation success rate of BeT and BeT modified version in ManiSkill and
Adroit tasks. BeT modifiled version is used in fine-tuning baselines, and original BeT is used in
Policy Decorator and non-fine-tuning baselines.

Task BeT BeT modified version
ManiSkill: StackCube (state) 71% 67%
ManiSkill: PeglnsertionSide (state) 15% 13%
ManiSkill: TurnFaucet (state) 41% 35%
ManiSkill: PushChair (state) 18% 23%
Adroit: Door (state) 78% 77%
Adroit: Pen (state) 65% 63%
Adroit: Hammer (state) 23% 21%
Adroit: Relocate (state) 20% 13%

Special Modifications on SAC We use SAC as our primary fine-tuning algorithm for Behavior
Transformer, with actor initialized using a pre-trained Behavior Transformer and a MLP as Q function.
See Appendix F.5.1 for discussion on the architecture choice of Q function.

22



Under review as a conference paper at ICLR 2025

B.4.2 DIPO FOR DIFFUSION POLICY

Special Modifications on DIPO DIPO uses action gradients to optimize the actions, and convert
online training to supervised learning, also refer to H.2. Since the Diffusion Policy employs a
prediction horizon that exceeds the action horizon (receding horizon), during the DIPO training phase,
we focus on optimizing only the first action horizon within the total prediction horizon using action
gradients. This approach prevents dynamics inconsistencies that would arise from optimizing the
remaining actions.

Following the general paradigm of fine-tining diffusion-based models in visual, we add LoRA to all
layers of diffusion policy.

B.5 BASELINES

In our experiments, we compare Policy Decorator with several strong baseline methods. The following
section provides implementation details for these baseline approaches.

Basic RL See Appendix B.4.

Regularized Optimal Transport (ROT) (Behavior Transformer Only). ROT (Haldar et al., 2023a)
is an online fine-tuning algorithm that fine-tunes a pre-trained base policy using behavior cloning
(BC) regularization with adaptive Q-filtering and optimal transport (OT) rewards. We use pre-trained
Behavior Transformer as base policy. For Behavior Cloning regularization, we allow BeT to output
the entire window of actions and apply the regularization accordingly. In experiments involving state
observations, the optimal transport (OT) rewards are computed using a ’trunk’ network within the
value function, which consists of a single-layer neural network. In contrast, for experiments with
visual observations, the OT rewards are computed directly using the visual encoder network. The
other experimental setup follows SAC.

Reinforcement Learning with Prior Data (RLPD) (Behavior Transformer Only). RLPD (Ball
et al., 2023) is a state-of-the-art online learn-from-demo method that enhances the vanilla SACfd
with critic layer normalization, symmetric sampling, and sample-efficient RL (Q ensemble + high
UTD). We add layer normalization to critic network. We maintain one offline buffer, which includes
demonstration data, and one online buffer, which contains online data. For online updates, we sample
50% batch from offline buffer and 50% batch from online buffer. We omit the sample-efficient RL
(Q ensemble + high UTD) due to the significant training costs associated with these components
and to ensure a fair comparison with other methods. The omitted component pursues extreme
sample efficiency at the cost of significantly increased wall-clock training time, which is impractical,
especially when fine-tuning a large model. The other experiment setup follows SAC.

Calibrated Q-Learning (Cal-QL) (Behavior Transformer Only). Cal-QL (Nakamoto et al., 2024)
is an offline RL online fine-tuning method that "calibrates" the Q function of vanilla CQL. We
pre-train a Q function using Cal-QL in the offline stage and then use SAC for fine-tuning in the online
stage with this pre-trained value function. We opted for this offline-to-online strategy because, in the
online stage of the original Cal-QL paper, calculating the critic loss requires querying the actor 20
times. This process is time-intensive, especially considering that the actor is initialized as a large
base model. The performance of curve C in Fig. 22 demonstrates the effectiveness of this strategy.
See F.3 for more discussion. In offline stage, we use pre-trained BeT with gradients open as actor and
an MLP as critic. In online stage, we use pre-trained BeT as actor and offline-trained MLP as critic.
The other experiment setup follows SAC.

Jump-Start Reinforcement Learning (JSRL) (Both Behavior Transformer and Diffusion Policy).
JSRL (Uchendu et al., 2023) is a curriculum learning algorithm that uses an expert teacher policy to
guide the student policy. In our setting, we use a pre-trained large policy (BeT or diffusion policy) as
the guiding policy and an MLP as the online actor. The initial jump start steps are the average length
of success trajectories in 100 evaluations of the pre-trained base policy. Following the setup in the
original paper, we maintain a moving window of evaluation success rate and best moving average
success rate. If current moving evaluation success rate is within the range of [best moving average -
tolerance, best moving average + tolerance], then we go 10 steps backwards.

Residual Reinforcement Learning (Residual RL) (Both Behavior Transformer and Diffusion
Policy). Residual RL (Johannink et al., 2019) learns a residual policy in an entirely uncontrolled

23



Under review as a conference paper at ICLR 2025

manner. In our experiments, We use a pre-trained large policy as the base policy and a small MLP as
the online residual actor. We follow the setting in the original paper that in online interactions, final
action = base action + online residual action.

Fast Imitation of Skills from Humans (FISH) (Both Behavior Transformer and Diffusion
Policy). FISH (Haldar et al., 2023b) builds upon Residual RL by incorporating a non-parametric
nearest neighbor search VINN policy (Pari et al., 2021) and learning an online offset actor with
optimal transport rewards. In our experiments, we use a GPT backbone as the representation network
for BeT experiments, a FiLM encoder (Perez et al., 2018) for diffusion state observation mode
experiments, and a visual encoder for visual observation mode experiments. See Appendix G.2.1 for
the performance of VINN policy.

C ADDITIONAL RESULTS OF POLICY DECORATOR

C.1 THE PERFORMANCE OF RL FROM SCRATCH

The RL training from scratch baseline has been incorporated into Fig. 13. We only plot results on
Adroit, as RL training from scratch achieves 0% success rate on ManiSkill tasks.

Adroit: Door Adroit: H Adroit: Pen Adroit: Relocate
100 100

B0 e s et b ek e 80

60 60

Success Rate %

40 40 N
20 A 20T TR %’/ # 20
AV N
o 2 M o UAYald /A o VA W MMW
0.00 025 050 075 100 125 150 175 2.00 0.0 05 1.0 15 20 25 3.0 0.0 05 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Environment Steps (millions) Environment Steps (millions) Environment Steps (millions) Environment Steps (millions)
—— Ours JSRL —— Residual RL —— FISH —— SAC —— ROT RLPD —— Cal-QL SAC from scratch == Base Policy

Figure 13: Add SAC (training from scratch) to Fig. 6. Results are only shown for Adroit tasks, as it
achieves 0% success rate on all ManiSkill tasks with sparse reward.

C.2 COMPARISON WITH DPPO
C.2.1 SETUP

DPPO (Ren et al., 2024), a very recent work, successfully fine-tunes diffusion policies using PPO,
achieving state-of-the-art performance. Key tricks include fine-tuning only the last few denoising
steps and fine-tuning DDIM sampling. Given that this project was released around three weeks
before the ICLR deadline, we lacked sufficient time to fully adapt it to our tasks. Nevertheless,
we conducted preliminary experiments comparing our approach with DPPO on their tasks. Even if
DPPO is carefully tuned on their tasks, we are still able to beat it.

Specifically, we applied Policy Decorator (our approach) to the two most challenging robotic
manipulation tasks in their paper: Square and Transport. We used the Diffusion Policy checkpoints
provided by the DPPO paper as our base policies.

24



Under review as a conference paper at ICLR 2025

C.2.2 RESULTS

RoboMimic: Transport

100 1

80

60

40

Success Rate %

p— —— DPPO

Policy Decorator (ours)
0 T T T
0 1 2 3 4

Environment Steps (millions)

201

Figure 14: Policy Decorator (ours) vs. DPPO on the Transport task.

As shown in Fig. 14, our approach significantly outperforms DPPO on the Transport task. According
to Figure 5 in the DPPO paper, DPPO requires approximately 16 million steps to converge to 80%-+
success rate on the Transport task. In contrast, our Policy Decorator achieves this performance in
only 4 million steps, demonstrating a nearly 4x improvement in sample efficiency.

RoboMimic: Square RoboMimic: Square
(w/o Early Termination) (w/ Early Termination)
100 4 100
AN
® 80 o R 801
: : _/_/-/_
© ©
@ 60 & 604
o ® /
(7] [7]
8 40 8 401
o o
=] =]
7] 7]
20 —— DPPO 20 —— DPPO
Policy Decorator (ours) Policy Decorator (ours)
0 : : : : : 0 : : :
0 1 2 3 4 5 6 0.0 05 1.0 1.5 2.0
Environment Steps (millions) Environment Steps (millions)

Figure 15: Policy Decorator (ours) vs. DPPO on the Square task.

On the Square task, our approach performs comparably to DPPO (left subfigure in Fig. 15). Upon
further investigation, we discovered that DPPO uses a fixed episode length without early termination
upon success signals. Empirically, this setup may negatively impact the sample efficiency of RL
algorithms, as transitions after task completion contribute minimally to learning. Consequently, we
conducted an additional experiment implementing early task termination upon success signals. The
results (right subfigure in Fig. 15) demonstrate that our approach outperforms DPPO in this
more reasonable setup.

C.2.3 SUMMARY
These experiments demonstrate that our method outperforms DPPO on challenging robotic
manipulation tasks. It is crucial to note that our approach is model-agnostic, whereas DPPO is

restricted to a specific case of Diffusion Policy (where all predicted actions are executed in the
environment, which is not the typical implementation of Diffusion Policy).

D ADDITIONAL ABLATION STUDIES

This section includes additional ablation studies results about base policies, low-performing check-
points, and PPO. In detail, Section D.1 discusses Policy Decorator also works with other types of

25



Under review as a conference paper at ICLR 2025

base policies (e.g., MLP, RNN, and CNN); Section D.2 demonstrates that Policy Decorator stays
effective in improving low-performing BeT checkpoints; Section D.3 indicates that Policy Decorator
is compatible with PPO as backbone RL algorithm.

D.1 ADDITIONAL BASE POLICIES

To demonstrate that Policy Decorator is truly versatile to all types of base policy, we further experiment

with model architecture of low representation power like MLP, BC-RNN, and CNN as well as low
performance checkpoints of Behavior Transformer.

Fig. 16 demonstrates that the Policy Decorator significantly enhances the performance of MLP,
BC-RNN, and CNN policies by interacting with environments.

Base Policy: MLP Base Policy: BC-RNN Base Policy: CNN
100 { 100 100

80 80 80

60 1 60 60 +

40 4 40

Success Rate %

40

Success Rate %
Success Rate %

20 4 wes  Policy Decorator (ours) P — - === Policy Decorator (ours) , 20 4 wes Policy Decorator (ours)
= - === Base Policy (mlp) == = Base Policy (BC-RNN) == = Base Policy (CNN)
0 ™ ™ ™ 0 ™ ™ ™ o T ™ ™ ™
0.0 0.5 1.0 1.5 20 0.0 0.5 1.0 15 2.0 0 1 2 3 4
Environment Steps 1e6 Environment Steps 1e6 Environment Steps 1e6

Figure 16: Policy Decorator with more base policies (MLP, BC-RNN, CNN) on TurnFaucet task
through online interactions.

D.2 USING OTHER CHECKPOINTS OF BASE POLICIES

As we claim that Policy Decorator is model-agnostic and is versatile to all types of base policies,
it is necessary to demonstrate that it not only improves well-trained base policy but also improves
low-performing checkpoints of base policy. Fig. 17 shows that the Policy Decorator achieves a
substantial improvement in the low-performance BeT checkpoint.

ManiSkill: TurnFaucet

100

80
BN
o
© 60
o === Policy Decorator (ours)
% == | Base Policy (BeT low)
8 40+
o
>
2]

20 o ——— —— ——— ——— ——

0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps 1e6

Figure 17: Policy Decorator with a low-performance BeT checkpoint.

26



Under review as a conference paper at ICLR 2025

D.3 CHANGE BACKBONE RL ALGORITHM TO PPO

Adroit: Pen

—————— m==m=_Policy Decorator (PPO)

=== PPO Fine-tuning
== Resiudual RL (PPO)
== Base Policy

Success Rate %

Environment Steps 1e6

Figure 18: Use PPO as the backbone RL algorithm in our method, RL fine-tuning, and Residual RL.

While we use SAC as the backbone RL algorithm in our experiments due to its high sample efficiency,
it is essential to demonstrate that the Policy Decorator can be integrated with other categories of
RL algorithms, such as policy optimization, to provide greater flexibility. We changed backbone
RL algorithm of our method, RL fine-tuning baseline, and residual RL baseline from SAC to PPO
(Schulman et al., 2017). As shown in Fig. 18, Policy Decorator with PPO successfully improves the
base policy and considerably outperforms all baselines.

E IMPORTANT DESIGN CHOICES

This section presents ablation results on a few key design choices, including the inputs for the residual
policy and the inputs for the critic.

E.1 INPUT OF RESIDUAL PoOLICY

The residual policy can receive input in the form of either observation alone or both observation and
action from the base policy. Our experiments indicate that using only observation typically produces
better results, as illustrated in Fig. 19.

ManiSkill: StackCube

100 A
O\o 80 -
Q
2
©
@ 60
n
3
o 401
3]
3
» 204 === Obs Only

_\ \/‘ Obs & Base Action
0 == T T T
0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (millions)

Figure 19: Different variants of input of residual policy.

E.2 INPUT OF CRITIC

In SAC, the critic Q(s, a) takes an action as input, and there are several design choices regarding this
action: we can use 1) the sum of the base action and residual action; 2) the concatenation of both;
or 3) the residual action alone. Based on our experiments shown in Fig. 20, using the sum of both
actions yields the best performance.

27



Under review as a conference paper at ICLR 2025

ManiSkill: StackCube

100

2 g0
Q
2
©
@ 60
n
]
8 40
g == Concat(Base, Residual)
9 204 Sum(Base, Residual)
== Residual Only
0 T T T T T
0.0 0.5 1.0 15 2.0 25 3.0

Environment Steps (millions)

Figure 20: Different variants of input of critic.

F FAILURE OF FINE-TUNING BASELINES

In this section, we analyze the poor performance of fine-tuning baselines in our experiments. We
provide an overall explanation for these failures in Sec. F.1. Then, Sec. F.2, F.3, and F.4 offer
illustrative experiments supporting the arguments presented in Sec. F.1. Finally, Sec. F.5
presents some additional ablation studies on design choices in fine-tuning baselines, demonstrating
our careful tuning of baseline implementations to achieve better performance.

F.1 OVERALL EXPLANATION

Even if we have selected the strongest learning-from-demo methods, most of them are still not
specifically designed for fine-tuning, and they do not intentionally prevent the unlearning of the
base model, i.e., the performance can drop significantly at the very beginning of training. This
phenomenon has also been discussed in Nakamoto et al. (2024). According to our observations, we
believe that performance degradation is probably due to the following two reasons:

1. Random Ceritic Initialization: We believe the randomly initialized critic network cannot
provide meaningful gradients to guide the policy. Such a noisy gradient can easily cause the
policy to deviate significantly from the initial weights. Once the unlearning happens, it becomes
very hard to relearn the policy since it cannot get the sparse reward signal anymore. Sec. F.2
presents an illustrative experiment to show this policy degradation with randomly initialized
critic. On the other hand, Cal-QL (Nakamoto et al., 2024) can theoretically learn a critic from
offline data. However, our empirical results indicate that when trained purely on demonstration
data without negative trajectories, the learned critic does not significantly improve online fine-
tuning. This performance degradation during Cal-QL online training aligns with observations
reported by (Yang et al., 2023a). Experimental evidence supporting this analysis is presented in
Sec. F.3.

2. Long Task Horizon: Long task horizon also significantly increases the difficulty of fine-tuning,
particularly in sparse reward settings. As the task horizon increases, the agent’s likelihood of
discovering sparse rewards through random exploration diminishes. Additionally, the sparse
reward signal requires more time to propagate through longer trajectories. The experiments
presented in Sec. F.4 empirically validate that the long task horizon is a key factor contributing
to the failure of fine-tuning baselines.

F.2 PoOLICY DEGRADATION WITH RANDOM INITIALIZED CRITIC
This section presents illustrative experiments demonstrating how updating the base policy with a
randomly initialized critic function Q(s, a) results in significant deviations from its original trajectory.

In the StackCube task, a robot arm must pick up a red cube and stack it on a green cube. Initially,
a pre-trained base policy (Behavior Transformer) successfully grasps the red cube and accurately
places it on the green cube, as shown in

28


https://sites.google.com/view/policy-decorator/home/policy-degradation

Under review as a conference paper at ICLR 2025

After fine-tuning the base policy with a randomly initialized critic for 100 gradient steps, the policy
begins to deviate slightly from the original trajectory, as shown in . While still able to grasp
the red cube, it fails to precisely place it on the green cube.

Following an additional 100 updates (200 total), the base policy deviates further from the original
trajectory, struggling to effectively grasp the red cube, as shown in

In summary, these experiments suggest that fine-tuning the base policy with a randomly
initialized critic can lead to unlearning. Once unlearning occurs, it becomes very hard to
relearn the policy since it cannot get the sparse reward signal anymore.

F.3 PRE-TRAINING CRITIC ON DEMO-ONLY DATASET DOES NOT HELP

Cal-QL (Nakamoto et al., 2024), a state-of-the-art offline RL method, aims to pre-train a critic
for efficient online fine-tuning. Our experiments show that pre-training a critic using Cal-QL on
demonstration-only datasets (without negative experiences) provides limited benefits for online
fine-tuning, as illustrated in Fig. 21. This section presents experiments explaining why it does not
help and validates the correctness of our Cal-QL baseline results.

The original Cal-QL paper reported much better results on Adroit tasks compared to our Cal-QL
baseline. We believe this discrepancy is mainly due to differences in experimental setups:

1. Offline Dataset: The original Cal-QL paper uses an offline dataset consisting of 25 human
teleoperation demonstrations and additional trajectories from a BC policy. Our Cal-QL baseline
uses only 25 human demonstrations, ensuring fair comparison with other learning-from-demo
baselines that only utilize demonstrations. We also made this assumption in Sec. 3.

2. Actor Architecture: The original Cal-QL paper employs a small MLP as the actor, while we
use a pre-trained Behavior Transformer (BeT) to align with our goal of improving the pre-trained
base policy.

3. Online Algorithm: The original Cal-QL paper uses Cal-QL algorithm in both offline and online
stage. However, computing critic loss in Cal-QL algorithm requires querying the actor 20 times
in each update, which is extremely time-consuming given that the actor is a large model in our
settings. Therefore, we use SAC in the online phase instead of Cal-QL.

To verify whether these setup differences cause the divergent results, we designed the following
experimental setups for Cal-QL, interpolating between the original setup and ours:

* A: Small MLP actor + Mixed dataset + online Cal-QL (Cal-QL’s original setting)

e C: Small MLP actor + Demo-only dataset + online SAC
* D: Large GPT actor + Demo-only dataset + online SAC

¢ E: BeT actor + Demo-only dataset + online SAC (the setup used in our experiments)

The experimental results of these setups are shown in Fig. 22. In Cal-QL’s paper, they only report
the results up to 300k steps, and our curve A perfectly matches the official results, which
suggests that our implementation is correct. Interestingly, Cal-QL exhibits instability when run
for longer periods (e.g., 3M steps), even in its original setup. Comparing curve A and
illustrates Cal-QL’s strong dependence on a large, diverse dataset comprising both demonstrations
and negative trajectories. Cal-QL’s sample efficiency deteriorates a lot when the offline dataset is
limited to a few demonstrations without negative trajectories. The comparison between and
curve C demonstrates that while using SAC as an online algorithm results in slightly reduced sample
efficiency, it still achieves 90%+ success rates. This trade-off suggests that sacrificing a little bit of
sample efficiency is acceptable in exchange for significant wall-clock time savings. The comparison
between curve C and curve D illustrates that a large GPT actor can also negatively impact Cal-QL’s
performance. Curve D and curve E demonstrate that using a pre-trained BeT outperforms a randomly
initialized GPT, which is expected.

In conclusion, the divergent results between Cal-QL’s original paper and our baseline can be
attributed to different experimental setups. Our results are validated and reliable.

29


https://sites.google.com/view/policy-decorator/home/policy-degradation
https://sites.google.com/view/policy-decorator/home/policy-degradation

Under review as a conference paper at ICLR 2025

Adroit: Pen Adroit: Pen
100 4 100 4
o 0 A: MLP + Mixed Dataset + online Cal-QL
i 80 1 % 807 (Cal-QL's original setting)
S 04 g o B: MLP + Demo Dataset + onll.ne Cal-QL
@ @ = C: MLP + Demo Dataset + online SAC
8 40 8 404 = D: GPT + Demo Dataset + online SAC
3 rrrar 5 E: BeT + Demo Dataset + online SAC
o 20 == Critic Initialized Randomly @ 204 ~ (setup in our experiment)
=== Critic Pre-trained by Cal-QL
0 . . . . . 0
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Environment Steps (millions) Environment Steps (millions)

Figure 21: Pre-training a critic Figure 22: To verify whether the setup differences cause the
by Cal-QL on demo-only datasets divergent results, we designed different experimental setups for
does not help online fine-tuning.  Cal-QL, interpolating between the original setup and ours.

F.4 LONG TASK HORIZON MAKES FINE-TUNING HARD

This section presents experiments exploring how task horizon affects the fine-tuning of the base
policy.

In the TurnFaucet task, no fine-tuning baselines achieve non-zero success rates. To shorten the
effective task horizon, we roll out the pre-trained base policy (Behavior Transformer) for a specific
number of steps (40, 100, or 120) in each episode. This approach likely brings the agent closer to
success, thus shortening the effective task horizon. We then perform regular RL fine-tuning for the
remaining steps of an episode.

Fig. 23 demonstrates that shortening the task horizon by 100 steps results in a significant improvement,
while reducing it by 120 steps achieves a 100% success rate. This experiment clearly shows that
the long task horizon is a major factor in fine-tuning failure, and reducing the task horizon
substantially eases RL fine-tuning difficulties.

ManiSkill: TurnFaucet

I\r\,\/v\/jv-

=== Reduce horizon by 0
Reduce horizon by 40

=== Reduce horizon by 100

=== Reduce horizon by 120

100 4

80

60

40 4

Success Rate %

20+

0 T T T
0.0 0.5 1.0 1.5 2.0

Environment Steps (millions)

Figure 23: Fine-tuning Behavior Transformer using SAC with different effective task horizons.

F.5 ABLATION STUDY ON DESIGN CHOICES IN FINE-TUNING BASELINES
This section contains ablation studies on some design choices in fine-tuning-based baselines. In detail,

Section F.5.1 discusses different choices of Q function architecture, while Section F.5.2 illustrates the
effects of using warmstart in Q function training.

F.5.1 ARCHITECTURE OF Q FUNCTION

The architecture of the Q function can be important in designing fine-tuning baselines. We essentially
have three options:

1. Q-function using an MLP
2. Q-function using a shared GPT backbone with the actor
3. Q-function using a separate GPT backbone

30



Under review as a conference paper at ICLR 2025

As shown in Fig. 24, we experimented with all the aforementioned Q-function architectures in
SAC and PPO fine-tuning experiments. The results indicate that SAC fine-tuning with an MLP
Q-function slightly improves the base policy, whereas SAC fine-tuning with the other two Q-function
architectures does not yield such improvements. In contrast, PPO fine-tuning across all Q-function

architectures demonstrates poor performance. Based on these observations, we chose to use the MLP
Q-function in our fine-tuning baselines.

Adroit: Pen Adroit: Pen
100 A 100
® 807 ® 80
o o === Policy Decorator (PPO)
g e gl pilgey -y 2l £ 60 = == ™= "em= PPO Fine-tune (MLP) v
73 » === PPO Fine-tune (shared backbone)
3 === Policy Decorator (SAC) % PPO Fine-tune (separate backbone)
g 401 s SAC Fine-tune (MLP) g 40 = Base Policy
(3 === SAC Fine-tune (shared backbone) a
20 1 SAC Fine-tune (separate backbone) 20
g = | Base Policy B
0 .m,;,zm 04 . : " -
0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 5
Environment Steps 1e6 Environment Steps 1e6

Figure 24: SAC/PPO fine-tuning with different critic architectures.

F.5.2 EFFECT OF WARM-START IN Q FUNCTION TRAINING

Warm-starting Q function training is a widely used technique to ensure that the actor is updated
with a reliable Q function. We also tried this technique in designing fine-tuning baselines. We
experimented with a warm-start critic for a number of steps without training the actor. However, as
shown in Fig. 25, this approach causes alpha, the learnable entropy coefficient in SAC, to increase
massively, leading to an explosion in Q loss. We also compared vanilla fine-tuning with fine-tuning
using a warm-start and fixed alpha. As indicated in Fig. 26, empirical results demonstrate that vanilla
fine-tuning outperforms fine-tuning with a warm-start and fixed alpha. Upon closer examination,
we found that fine-tuning with a warm-start and fixed alpha results in very unstable critic training.
Therefore, we do not warm-start Q function training in our fine-tuning baselines.

Adroit: Pen 1e9 Adroit: Pen
120 f— Apra — Q Loss
100 37
80 1
24
60
404 1
20+
0 0+
0 50000 100000 150000 200000 0 50000 100000 150000 200000
Environment Steps Environment Steps

Figure 25: Critic warm start results in alpha and Q loss explosion when auto entropy tuning is
enabled.

Adroit: Pen, SAC fine-tune

Ry = Vanilla SAC Fine-tune

80 4 = Warm-start (fixed alpha) M
== = Base Policy

s0 FT=—T—ER —_—— e - -

40

Success Rate %

20 A

0.0 0.5 1.0 1.5 2.0 25 3.0
Environment Steps 1e6

Figure 26: Warm-start the critic during fine-tuning.

31



Under review as a conference paper at ICLR 2025

G FAILURE OF NON-FINE-TUNING BASELINES

In this section, we analyze the poor performance of non-fine-tuning baselines in our experiments. We
discusses the failure of vanilla Residual RL in Section G.1. We provides the explanations of failure
of FISH in Section G.2.

G.1 FAILURE OF VANILLA RESIDUAL RL

The residual RL baseline uses identical settings to our method, excluding the controlled exploration
module. The primary failure mode of residual RL stems from 2 points:

1. Random residual actions in early training stages, causing the agent to deviate significantly from
the base policy. This deviation leads to not getting any success signals for guiding learning. (see
for an example).

2. Residual policy does not know it aims to minor fix the base policy, so during training, the
average size of residual actions go beyond the average size of base policy actions, destroying
the performance of base policy.

This is also supported by our ablation study (Fig. 10 and 11). As we gradually remove controlled

exploration strategies (reducing H to 0 or increasing alpha to 1), our method approaches vanilla
residual RL, resulting in deteriorating performance.

G.2 FAILURE OF FISH

The primary failure mode of FISH stems from the extremely poor performance of non-parametric
VINN policy in our experiments. See Section G.2.1 for the performance of VINN policy.

G.2.1 VINN PERFORMANCE
The performance of VINN base policy are shown below.

Table 11: The performance of VINN base policy using GPT backbone from BeT under state
observation.

Task Success Rate
ManiSkill: StackCube 0%
ManiSkill: PeglnsertionSide 0%
ManiSkill: TurnFaucet 1%
ManiSkill: PushChair 0%
Adroit: Door 12%
Adroit: Pen 16%
Adroit: Hammer 0%
Adroit: Relocate 2%

Table 12: The performance of VINN base policy using FILM encoder from Diffusion Policy under
state observation.

Task Success Rate
ManiSkill: PeglnsertionSide 0%
ManiSkill: TurnFaucet 0%
ManiSKkill: PushChair 0%
Adroit: Pen 16%
Adroit: Hammer 0%
Adroit: Relocate 0%

32


https://sites.google.com/view/policy-decorator/home/random-residual-actions

Under review as a conference paper at ICLR 2025

Table 13: The performance of VINN base policy using visual encoder from Diffusion Policy under
visual observation.

Task Success Rate
ManiSkill: TurnFaucet 0%
ManiSkill: PushChair 0%
Adroit: Door 0%
Adroit: Pen 8%

H FINE-TUNING DIFFUSION POLICY USING RL

H.1 WHY FINE-TUNING DIFFUSION POLICY USING RL IS NON-TRIVIAL

Diffusion Models (Ho et al., 2020) and their applications in robotic control (Chi et al., 2023; Janner
et al., 2022; Ajay et al., 2022) have traditionally been trained using supervised learning, where ground
truth labels (e.g., images, actions) are required to supervise the denoising process.

Recently, novel approaches (Fan & Lee, 2023; Black et al., 2023; Uehara et al., 2024) have emerged,
proposing the use of reinforcement learning (RL) to train diffusion models. The high-level idea
involves modeling the denoising process as a Markov Decision Process (MDP) and assigning rewards
based on the quality of the final denoised samples. This allows RL gradients to be backpropagated
through the inference process, updating the model weights accordingly. This training paradigm
represents a significant departure from conventional diffusion model training methods and may face
challenges when the number of denoising steps is large. To date, these methods have primarily
been applied in the domains of image generation, molecule design, and DNA synthesis.

However, this training paradigm does not directly transfer to robotic control problems, par-
ticularly in sparse reward tasks. As discussed in Ren et al. (2024), fine-tuning diffusion models
in robotic control can be viewed as a "two-layer" MDP, where a complete denoising process with
hundreds of steps represents a single decision step in the robotic control MDP. For example, if
a robotic task requires 200 decision steps (actions) to complete, and a diffusion model uses 100
denoising steps to generate a decision (action), the reward in a sparse-reward robotic control task
would be received only every 20,000 denoising steps. This presents a significantly greater challenge
than training a diffusion model to generate images using RL, where rewards are typically received
every 100 denoising steps under the same assumptions.

H.2 How "BAsICc RL FOR DIFFUSION POLICY" BASELINE IS SELECTED

Despite the challenges in training diffusion policies for robotic control using RL, recent attempts
have emerged. These can be broadly grouped into three categories. We will briefly explain each
method and discuss the selection of the "Basic RL" baseline for fine-tuning diffusion policy.

Converting RL into Supervised Learning Methods in this category adhere to the conventional
training recipe of the diffusion models, and try to define a "ground truth action label" for supervision.
DIPO (Yang et al., 2023b) introduces "action gradient," using gradient descent on (s, a) to estimate
the optimal action for state s. DIPO is selected as the basic RL algorithm in our experiments.
IDQL (Hansen-Estruch et al., 2023) constructs an implicit policy by reweighting samples from a
diffusion-based policy, and using the implicit policy to supervise the training of the diffusion-based
policy. We did not select it as the fine-tuning baseline for two reasons: 1) the training can be
extremely slow especially with large base policies, because IDQL involves sampling the diffusion
model multiple times (32 to 128 in their code) to compute the implicit policy; 2) as reported in its
paper, IDQL performs worse than Cal-QL and RLPD, which are included in our baselines.

Matching the Score to the Q Function QSM (Psenka et al., 2023) aims to match the score ¥ of
the diffusion-based policy to the gradient of the Q function V,QY (s, a) using supervised learning.
According to Ren et al. (2024), QSM performs poorly in robotic manipulation tasks, thus it is not
considered a competitive baseline.

33



Under review as a conference paper at ICLR 2025

Backpropagating RL Gradients Through the Inference Process Methods in this category adapt
the training recipe discussed in H.1 to robotic control tasks, employing additional techniques to
make it work. The actor’s training objective is to maximize Q(s, a). Diffusion QL (Wang et al.,
2022) represents a basic version of these methods, primarily used in offline RL settings. However, its
online performance is poor, as reported by Ren et al. (2024). Consistency AC (Ding & Jin, 2023)
distills diffusion models into consistency models, significantly shortening the gradient propagation
path. Nevertheless, its offline-to-online performance, as reported in its own paper, is even worse than
Diffusion QL, thus we do not consider it a competitive baseline.

DPPO (Ren et al., 2024), a very recent work, successfully fine-tunes diffusion policies using PPO,
achieving state-of-the-art performance. Key tricks include fine-tuning only the last few denoising
steps and fine-tuning DDIM sampling. Given that this project was released around three weeks
before the ICLR deadline, we lacked sufficient time to fully adapt it to our tasks. Nevertheless,
we conducted preliminary experiments comparing our approach with DPPO on their tasks. Results
indicate that our method significantly outperforms DPPO on their tasks. See Appendix C.2 for more
details.

34



	Introduction
	Related Works
	Problem Setup
	Policy Decorator: Model-Agnostic Online Refinement
	Learning Residual Policy via RL
	Controlled Exploration
	Design Choices & Implementation Details

	Experiments
	Experimental Setup
	Task Description
	Base Policy Model

	Baselines
	Fine-tuning Methods
	Non-fine-tuning Methods

	Main Results & Analysis
	Ablation Study
	Relative Importance of Each Component
	Influence of Key Hyperparameters
	Additional Ablation Studies

	Properties of the Refined Policy

	Conclusions, Discussions, & Limitations
	Further Details on the Experimental Setup
	Task Descriptions
	ManiSkill Tasks
	Adroit Tasks

	Demonstrations

	Implementation Details
	Base Policies
	Behavior Transformer
	Diffusion Policy
	Checkpoint Selection

	Policy Decorator (Our Approach)
	Important Shared Hyperprameters among Policy Decorator and other Baselines
	Enable RL Fine-tuning on Base Policies
	SAC for Behavior Transformer
	DIPO for Diffusion Policy

	Baselines

	Additional Results of Policy Decorator
	The Performance of RL from scratch
	Comparison with DPPO
	Setup
	Results
	Summary


	Additional Ablation Studies
	Additional Base Policies
	Using Other Checkpoints of Base Policies
	Change Backbone RL Algorithm to PPO

	Important Design Choices
	Input of Residual Policy
	Input of Critic

	Failure of Fine-tuning Baselines
	Overall Explanation
	Policy Degradation with Random Initialized Critic
	Pre-training Critic on Demo-only Dataset Does Not Help
	Long Task Horizon Makes Fine-tuning Hard
	Ablation Study on Design Choices in Fine-tuning Baselines
	Architecture of Q Function
	Effect of Warm-start in Q Function Training


	Failure of Non-fine-tuning Baselines
	Failure of Vanilla Residual RL
	Failure of FISH
	VINN Performance


	Fine-tuning Diffusion Policy using RL
	Why Fine-tuning Diffusion Policy using RL is Non-trivial
	How "Basic RL for Diffusion Policy" Baseline is Selected


