
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendices
A ENVIRONMENTS TESTED

Following are the environments we evaluated in Sec. 5:

D4RL Maze2d (Fu et al., 2020). The maze2d task is a navigation task that requires a 2D agent
to reach a fixed goal location in the maze. This task jusitifies the ability of offline RL algorithms
to stitch previously collected subtrajectories to get the shortest path to the goal location. There are
three layouts in this task, including umaze, medium and large. The dataset of this environment is
generated by selecting waypoints randomly and using a planner which could generate subtrajectories
among the waypoints.

D4RL AntMaze (Fu et al., 2020). The Antmaze task is a navigation task that replaces the 2D ball
from Maze2D with a 8-Dof Ant quadraped robot. This task combines the challenges of controlling
the robot and navigting the robot to the goal location. There are three different layouts in this
environment, including umaze, medium, and large. The environment also contains3 three flavors of
datasets, including fixed, diverse, and play, wich differs in the chosen of the start and goal locations.

D4RL Locomotion (Fu et al., 2020). The Locomotion environment contains three different types of
tasks (walker2d, hopper, and halfcheetah), including 12 different offline data with varying levels of
expertise (random, medium, medium-replay, and medium-expert). The medium datasets are gener-
ated by a policy trained with a early-stopping SAC (Haarnoja et al., 2018). The random datasets are
generated by a random initilized policy. The medium-replay datasets consist of samples in the re-
play buffer during the training until the policy reaches the medium performance. The medium-expert
dataset contains part of the expert demonstrations and part of the suboptimal trajectories.

D4RL Kitchen (Fu et al., 2020). The Kitchen task involves a simulated environment where a
9-DoF robot manipulates various objects, such as sliding a cabinet door, switching an overhead
light, and opening a microwave. Initially introduced by (Gupta et al., 2019), this task requires the
robot to complete a sequence of multiple subtasks, each rewarded with a sparse, binary reward
upon successful completion. The offline dataset provided includes only portions of the complete
sequence, necessitating that the agent learn to assemble these sub-trajectories effectively.

Meta-World (Yu et al., 2019). Meta-World is an extensive platform created to assess and enhance
algorithms in both reinforcement learning and multi-task learning. With 50 unique robotic manip-
ulation tasks, it provides a varied and demanding setting for evaluating how well algorithms can
generalize and rapidly learn new skills.

B HYPERPARAMETERS

We list all the hyperparameters here, which are applied to all the environments. In addition, we will
release our code upon acceptance.

Hyperparameter Value
Batch Size 16

Training Steps 106

Optimizer Adam
Learning Rate 2⇥ 10�4

Trajectory Length 10
Distance Threshold 1.5

Diffusion Steps 128
Number of Generations 5⇥ 106

Table 8: Hyperparameter settings used in our experiments.
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Table 9: Results of CQL and Decision Transformer on the D4RL Maze, Antmaze, and Kitchen en-
vironments. The numbers denote the performance increase by the data augmentation method
compared to the original result. RTDiff consistently improves the performance of offline rein-
forcement learning algorithms in all these environments.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

maze2d
umaze 12.3±3.5 6.3±4.1 7.1±4.0 17.2±4.7 8.3±4.3 9.0±4.1

medium 8.3±2.7 5.8±3.2 6.2±3.1 9.8±2.5 6.3±2.5 5.9±2.6

large 11.3±3.3 7.4±2.8 7.8±2.9 12.7±4.5 7.8±3.6 7.5±3.7

antmaze-umaze fixed 5.2±3.3 4.9±3.7 4.8±3.6 5.7±3.5 5.4±3.8 5.5±3.7

diverse 4.3±2.7 4.3±3.1 4.3±3.0 4.2±3.1 3.9±2.8 4.0±2.9

antmaze-medium play 7.9±4.2 7.5±3.6 7.4±3.5 8.3±3.2 8.4±2.7 8.2±2.8

diverse 9.2±3.8 8.5±3.6 8.8±3.7 8.9±2.4 8.3±3.6 8.5±3.4

antmaze-large play 6.5±3.5 5.4±2.8 5.6±3.0 5.4±2.5 4.8±2.0 4.6±2.1

diverse 6.3±3.4 5.7±2.5 5.9±2.7 5.8±5.5 4.7±6.2 5.0±6.0

kitchen
complete 6.6±7.4 3.4±8.3 4.0±8.0 5.3±7.2 3.6±6.5 4.2±6.7

partial 13.6±6.3 8.3±7.2 9.0±7.0 14.2±7.8 6.4±6.8 7.0±6.9

mixed 11.3±8.5 6.2±9.1 6.0±9.0 10.3±7.5 7.2±7.7 7.5±7.6

Table 10: Results of CQL and DT on the D4RL Locomotion environment. The numbers denote
the performance increase by the data augmentation method compared to the original result.
RTDiff improves the performance of these reinforcement learning methods in different tasks.

Environment Data Type CQL (Kumar et al., 2020) DT (Chen et al., 2021)
RTDiff SynthER ATraDiff RTDiff SynthER ATraDiff

walker2d
mixed 5.2±2.3 4.9±4.3 5.1±3.8 2.2±1.3 2.4±2.4 2.2±2.0

medium 2.6±4.7 2.3±3.7 2.5±4.1 2.3±2.1 2.1±2.8 2.2±2.5

medexp 0.1±0.4 0.0±0.4 0.1±0.4 0.6±0.8 0.4±0.7 0.5±0.7

hopper
mixed 16.4±1.7 18.4±2.4 17.6±2.1 11.2±5.3 13.6±4.7 13.2±4.5

medium 6.3±6.0 5.8±4.8 6.1±5.4 4.3±1.5 3.5±2.3 4.0±2.0

medexp 5.3±4.4 3.6±5.2 4.9±4.8 1.6±1.2 1.3±2.2 1.5±1.9

halfcheetah
mixed 2.4±0.8 1.9±0.5 2.3±0.6 2.4±0.8 1.9±0.5 2.3±0.6

medium 0.9±0.3 0.6±0.4 0.8±0.4 0.9±0.3 0.6±0.4 0.8±0.4

medexp 1.3±0.8 0.0±0.6 1.0±0.7 1.3±0.8 0.0±0.6 1.0±0.7

C MORE EXPERIMENTAL RESULTS

In this section, we show more experimental results to support the conclusion of our paper.

C.1 RESULTS WITH DIFFERENT BASIC RL ALGORITHMS

To illustrate that our RTDiff indeed improves the performance of general offline RL methods, here
we include more experiments involving Decision Transformer (Chen et al., 2021) and CQL (Kumar
et al., 2020), which are representative sequence modeling baseline and model-free baseline. The
results shown in Tables 9 and 10 illustrate that our method consistently improves the performance
of different offline RL methods.

C.2 ORIGINAL PERFORMANCE REPORT

The performance increase reported in Section 5.1 is measured by the difference between the normal-
ized score with data augmentation and the original normalized score without any data augmentation
methods. The original results are shown in Table 11.

C.3 MORE ABLATION STUDIES

Threshold of the OOD detector. We select the value of this threshold with the following method,
using D4RL Locomotion environment as the representative environment: We use grid search to
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Table 11: Original normalized return of the methods we used in our paper on the D4RL Locomotion
environment.

Environment Data Type CQL TD3+BC DT IQL

walker2d
mixed 73.1± 13.2 85.6± 4.0 81.8± 6.9 82.2± 3.0

medium 80.8± 3.3 82.7± 4.8 65.1± 1.6 80.9± 3.2
medexp 109.6± 0.4 110.0± 0.4 110.4± 0.3 111.7± 0.9

hopper
mixed 95.1± 5.3 64.4± 21.5 59.9± 2.7 97.4± 6.4

medium 59.1± 3.8 60.4± 3.5 67.6± 2.5 67.5± 3.8
medexp 95.1± 5.3 101.2± 9.1 107.1± 1.0 107.4± 7.8

halfcheetah
mixed 45.0± 0.3 44.8± 0.6 38.9± 0.5 44.5± 0.2

medium 47.0± 0.2 48.1± 0.2 42.2± 0.3 48.3± 0.2
medexp 95.6± 0.4 90.8± 6.0 91.6± 1.0 94.7± 0.5

find the best choice of the hyperparameter, and then do a cross-validation of the representative
environment to ensure its robustness. After selecting the threshold, we directly apply this threshold
to all the environments we used, without any further tuning. To demonstrate the robustness of our
threshold, we conduct a further ablation study on the environment maze2d. The results shown in
Table 12 illustrate that this threshold disM = 1.5 is reasonable across different environments.

Table 12: Performance of maze2d environments under different thresholds. disM = 1.5 achieves
the overall best performance compared with other threshold choices.

Threshold 1.0 1.3 1.5 2.0
maze2d-umaze 7.2 12.5 12.3 4.1

maze2d-medium 5.7 7.9 8.3 2.8
maze2d-large 7.1 9.6 11.3 3.7
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