APPENDIX

A

B

C

Additional Implementation Details

Representation Visualization

Results on Additional Datasets

Experiments with the Stronger DINOv2 Representations
Category Discovery with Estimated Category Numbers
Utilization Ratio of Unlabelled Data

GCD Classifier vs. Debiased Classifer

Performance of the Semantic Distribution Detector
Analysis of Attention Maps

Ablation Studies on More Datasets

Impact of Hyperparameters

Stability Analysis

Prediction Error Analysis

10

12

13

15

16



A ADDITIONAL IMPLEMENTATION DETAILS

We adopt the class splits of labelled (‘Old’) and unlabelled (‘New’) categories in Vaze et al. (2022a)
for generic object recognition datasets (including CIFAR-10 Krizhevsky et al. (2009) and CIFAR-
100 Krizhevsky et al. (2009)) and the fine-grained Semantic Shift Benchmark Vaze et al. (2022b)
(comprising CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji
et al. (2013)). Specifically, for all these datasets except CIFAR-100, 50% of all classes are selected
as ‘Old’ classes ();), while the remaining classes are treated as ‘New’ classes (),,\);). For CIFAR-
100, 80% of the classes are designated as ‘Old’ classes, while the remaining 20% as ‘New’ classes.
Furthermore, for ImageNet-1K Deng et al. (2009), which is not covered in Vaze et al. (2022a), we
follow Wen et al. (2023) to select the first 500 classes sorted by class ID as the labelled classes.
For all the datasets, 50% of the images from the labelled classes are randomly sampled to form the
labelled dataset D;, and all remaining images are regarded as the unlabelled dataset D,,. Moreover,
following Vaze et al. (2022a) and Wen et al. (2023), the model’s hyperparameters are chosen based
on its performance on a hold-out validation set, formed by the original test splits of labelled classes
in each dataset. All experiments utilize the PyTorch framework on a workstation with an Intel 17
CPU and eight Nvidia Tesla V100 GPUs. The models are trained with a batch size of 128 on a single
GPU, except for the the model on CIFAR-100, ImageNet-100 and ImageNet-1K dataset, for which
the training is performed with eight GPUs.



B REPRESENTATION VISUALIZATION

Here, we show the visual representation of the baseline and our method using ¢-SNE Van der Maaten
& Hinton (2008). Specifically, we randomly select a set of 20 classes, including 10 from the ‘Old’
categories and 10 from the ‘New’ categories. The clearly distinguishable clusters depicted in Fig. |
indicate that the features obtained within our framework form notably cohesive groupings compared
to those of the baseline. This effectively demonstrates the optimization impacts induced by our
method on the clustering feature space.
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Figure 1: ¢-SNE visualization of 20 classes randomly sampled from the CIFAR-100 Krizhevsky
et al. (2009) dataset.



C RESULTS ON ADDITIONAL DATASETS

To assess the performance of the proposed method comprehensively, we conducted evaluations on
two more fine-grained datasets: Oxford-Pet Parkhi et al. (2012) and Herbarium 19 Tan et al. (2019).
Oxford-Pet is a challenging dataset featuring various species of cats and dogs with limited data.
Herbarium19, on the other hand, is a botanical research dataset encompassing diverse plant types,
known for its long-tailed distribution and fine-grained categorization. The outcomes of our ex-
periments on these datasets are detailed in Tab. 1. The results of SimGCD Wen et al. (2023) on
Oxford-Pet are obtained through the execution of the officially released code. Our DebGCD model
consistently demonstrates superior performance on both datasets.

Table 1: Comparison with state-of-the-art GCD methods on Herbarium19 Tan et al. (2019) and
Oxford-Pet Parkhi et al. (2012).

Oxford-Pet Herbarium19

Method All Old New All Old New
k-means MacQueen (1967) 77.1 70.1 80.7 13.0 12.2 13.4
RankStats+ Han et al. (2021) - - - 279 55.8 12.8
UNO+ Fini et al. (2021) - - - 28.3 537 14.7
ORCA Cao et al. (2022 - - - 24.6  26.5 23.7
GCD Vaze et al. (2022a) 80.2  85.1 77.6 354 510 270
XCon Fei et al. (2022) 86.7 915 84.1 - - -

OpenCon Sun & Li (2022) - - - 39.3 589 28.6
DCCL Pu et al. (2023) 88.1 88.2 88.0 - - -

SimGCD Wen et al. (2023) 917 836 960 440 58.0 36.4

#GCD Vaze et al. (2023) - - - 45.8 61.9 37.2
InfoSieve Rastegar et al. (2023) 90.7 95.2 88.4 40.3 59.0 30.2
DebGCD 93.0 864 96.5 447 594  36.8




D EXPERIMENTS WITH THE STRONGER DINOV2 REPRESENTATIONS

To further evaluate the robustness of the proposed method, we also evaluate the performance of
DebGCD utilizing the stronger DINOv2 Oquab et al. (2023) pre-trained weights. Like in Vaze et al.
(2023), in Tab. 2, we also compare our method with the k-means MacQueen (1967) baseline, and
SimGCD Wen et al. (2023), uGCD Vaze et al. (2023). Our method outperforms other methods on
CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013) on ‘All’, ‘Old’ and ‘New’ classes
consistently. On Stanford Cars Krause et al. (2013), our method outperforms other methods on
‘New’ classes, while performing the second-best on ‘All’ and ‘Old’ classes. Moreover, for the
average performance of ‘All’ classes across the three datasets, DebGCD outperforms the SimGCD
baseline by about 6% and pGCD by about 3%. Additionally, we also evaluate our model on generic
datasets and compare it with the SimGCD baseline in Tab. 3, demonstrating consistent improvement.
The results on both fine-grained and generic datasets validate the robustness of our proposed method
on the stronger DINOV2 representations, further showcasing its effectiveness.

Table 2: Comparison with state-of-the-art GCD methods on SSB leveraging DINOv2 Oquab et al.
(2023) pre-trained weights.

CUB Stanford Cars FGVC-Aircraft Average

Method All Old New All Old New All Old New All
k-means MacQueen (1967) 67.6 60.6 71.1 294 245 318 189 169 199 38.6
GCD Vaze et al. (2022a) 719 712 723 657 67.8 647 554 479 592 64.3
CiPR Hao et al. (2024) 783 734 808 667 770 61.8 59.2 650 56.3 68.1
SimGCD Wen et al. (2023) 71.5 78.1 683 71.5 819 666 639 69.9 60.9 69.0
#GCD Vaze et al. (2023) 74.0 759 731 761 91.0 68.9 663 68.7 65.1 72.1
SPTNet Wang et al. (2024) 763 79.5 74.6 - - - - - - -

DebGCD 775 80.8 758 754 877 695 719 76.0 69.8 74.9

Table 3: Comparison with state-of-the-art GCD methods on generic datasets leveraging DI-
NOV2 Oquab et al. (2023) pre-trained weights.

CIFAR-10 CIFAR-100 ImageNet-100 ImageNet-1K
Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022a) 97.8 99.0 97.1 79.6 845 699 785 895 73.0 = - -
CiPR Hao et al. (2024) 99.0 98.7 992 903 89.0 931 882 87.6 885 - - -
SimGCD Wen et al. (2023) 98.7 96.7 99.7 885 892 872 899 955 87.1 58.0 669 532
SPTNet Wang et al. (2024) - - - - - - 90.1 96.1 87.1 - - -
DebGCD 989 975 99.6 90.1 909 88.6 932 97.0 912 717 86.2 64.5




E CATEGORY DISCOVERY WITH ESTIMATED CATEGORY NUMBERS

Following the majority of the literature, we experiment mainly using the ground-truth category
numbers. In this section, we report the results of DebGCD using the number of categories esti-
mated utilizing an off-the-shelf method Vaze et al. (2022a), to showcase the performance with the
ground-truth category numbers are not available. Tab. 4 reports the estimated numbers. We compare
DebGCD with SimGCD Wen et al. (2023), uGCD Vaze et al. (2023), and GCD Vaze et al. (2022a)
in Tab. 5. For both CUB Wah et al. (2011) and Stanford Cars Krause et al. (2013), despite a discrep-
ancy of approximately 15% between the ground-truth and estimated category numbers, our method
exhibits a smaller decline in performance compared to GCD and SimGCD. The same trend is also
observed on Imagenet-100 Deng et al. (2009). DebGCD remains the most competitive method on
‘All’ classes using the same estimated category numbers on all four datasets, which clearly demon-
strates the robustness and effectiveness of our proposed method.

Table 4: Estimated class numbers in the unlabelled data using method proposed in Vaze et al.
(2022a).

CUB Stanford Cars CIFAR-100 ImageNet-100

Ground-truth K 200 196 100 100
Estimated &K' 231 230 100 109

Table 5: Results with the estimated number of categories. The estimated class numbers in Tab. 4 are
adopted for all methods.

CUB Stanford Cars CIFAR-100 ImageNet-100

Method All Old New All Old New All Old New All Old New
GCD Vaze et al. (2022a) 47.1 55.1 448 350 560 248 73.0 762 665 727 91.8 638
SimGCD Wen et al. (2023) 61.5 664 59.1 49.1 651 413 801 812 778 817 912 768
#GCD Vaze et al. (2023) 62.0 603 628 563 668 51.1 - - - - - -

DebGCD 645 685 625 633 786 558 83.0 84.6 799 849 933 80.7




F UTILIZATION RATIO OF UNLABELLED DATA

The data utilization ratio is a notable index for pseudo-labeling methods, offering clear insights into
the data efficiency. Our examination encompasses the utilization ratio of unlabelled data from both
the ‘Old’ and ‘New’ classes during the training of the debiased classifier on FGVC-Aircraft Maji
et al. (2013) and Stanford Cars Krause et al. (2013), as depicted in Fig. 2. Initially, the major-
ity of data from the unknown categories remains untapped. Subsequently, after approximately 20
epochs, samples from unknown categories start to be incorporated. The utilization ratio keeps grow-
ing, reaching a ratio of around 40% at the 100th epoch. Ultimately, more than 60% of the known
categories’ samples and nearly half of the unknown categories’ samples are utilized.
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Figure 2: Unlabelled data utilization ratios for ‘Old” and ‘New’ classes during training on FGVC-
Aircraft Maji et al. (2013) (left) and Stanford Cars Krause et al. (2013) (right) datasets.



G GCD CLASSIFIER vs. DEBIASED CLASSIFER

We compare the performance between the two classifiers, the GCD Classifier and the debiased clas-
sifier, in our framework. We report the ACC results across different epochs in Fig. 3 when training
on Stanford Cars Krause et al. (2013), including unlabelled data from both training and the valida-
tion splits of the original dataset. Initially, the debiased classifier exhibits bias towards the ‘Old’
classes, given that the training data primarily comprises labelled data from known categories. How-
ever, as predicted scores of the unlabelled samples, particularly those from the unknown categories,
progressively surpass the debiasing threshold, the performance on the unknown categories gradu-
ally improves and eventually matches with the labelled categories. Ultimately, upon convergence of
the model, the performance on both known and unknown categories converges to that of the GCD
classifier.
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Figure 3: ACC evolution on both the ‘Old’ and ‘New’ classes of GCD Classifier and debiased
classifier during training on Stanford Cars dataset Krause et al. (2013). The top two figures depict
ACC on the unlabelled training set, while the bottom two illustrate ACC on the validation set.



H PERFORMANCE OF THE SEMANTIC DISTRIBUTION DETECTOR

We evaluate the OOD detection performance of our semantic distribution detector in DebGCD, us-
ing the threshold-free Area Under the Receiver-Operator curve (AUROC) as the evaluation metric,
which is widely used in the OOD detection literature. A comparison of the OOD performance
between training the entire framework and training solely the distribution detector is presented in
Tab. 6. A significant improvement in OOD performance is obtained by training jointly the GCD
classifier and debiased classifier. This aligns with the results presented in Tab. 4 of the main paper,
which demonstrate the mutual benefits among the three branches (tasks) in our framework. Addi-
tionally, we visualize the distribution of the score s; on the challenging SSB datasets in Fig. 4 which
shows that our method can successfully distinguish samples from ‘Old’ and ‘New’ classes in the
unlabelled data of both the training and validation splits of the original dataset.
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Figure 4: Histograms of the distribution scores s; for datasets in SSB Vaze et al. (2022b).

Table 6: OOD performance in terms of AUROC on unlabelled data, including CIFAR-10 Krizhevsky
etal. (2009), CIFAR-100 Krizhevsky et al. (2009), ImageNet-100 Deng et al. (2009), CUB Wah et al.
(2011), Stanford Cars Krause et al. (2013), and FGVC-Aircraft Maji et al. (2013).

CIFAR-10 CIFAR-100

ImageNet-100 CUB  Stanford Cars

FGVC-Aircraft

66.1
97.5

90.8
94.8

Lsar
Lsa+LgeatLadal

76.2
86.3

78.6
89.6

71.5
86.8

96.5
99.5




I ANALYSIS OF ATTENTION MAPS

In our DebGCD framework, both the backbone embedding space and the GCD classifier are opti-
mized. Thus, the CLS token is indirectly optimized. We can glean insights from its attention with the
patch embeddings. In Fig. 5, we visualize the attention maps from the final transformer block in the
DINO backbone Caron et al. (2021) on the three fine-grained datasets in SSB benchmark Vaze et al.
(2022b). Within this final block, a multi-head self-attention layer with 12 attention heads attends to
the input features, producing 12 attention maps between the CLS token and patch embeddings at a
resolution of 14 x 14. Following Caron et al. (2021), we compute the mean value of these attention
maps and upsample them to the image size to visualize the most prominent regions. The visualiza-
tion demonstrates that the attention maps generated by our model predominantly focus on the object
of interest, effectively ignoring spurious factors and background clutter, while those of the DINO
baseline are more scattered over the entire image.
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Figure 5: Visualization of attention maps. Our method successfully directs its attention towards
foreground objects, irrespective of whether they belong to the ‘Old’ or ‘New’ classes. The baseline
denotes the pre-trained DINO.
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J ABLATION STUDIES ON MORE DATASETS

In addition to the Stanford Cars dataset, we present ablation results on additional datasets to validate
the effectiveness of the proposed components. These include the other two datasets from the SSB
benchmark: CUB Wah et al. (2011) and FGVC-Aircraft Maji et al. (2013), as well as the generic
dataset ImageNet-100 Deng et al. (2009), detailed in Tab. 7. The results indicate that directly apply-
ing debiased learning to the original GCD classifier results in a performance decline across all three
datasets (Row (1) vs. Row (2)). In contrast, utilizing an auxiliary classifier leads to performance im-
provements of 3.3%, 3.5%, and 1.7% on the three datasets, respectively, as observed in Row (1) vs.
Row (3). This underscores the importance of the auxiliary classifier in achieving effective debiased
learning. Moreover, the joint training of the debiased classifier and the OOD detector provides fur-
ther enhancements (Row (3) vs. Row (5)). Lastly, the incorporation of distribution guidance results
in additional performance improvements. These findings align with those observed on the Stanford
Cars dataset, as demonstrated in manuscript.

Table 7: Ablations on more datasets, including CUB Wah et al. (2011), FGVC-Aircraft Maji et al.

(2013) and ImageNet-100 Deng et al. (2009). ACC of ‘All’, ‘Old’ and ‘New’ categories are listed.
Debiased Auxiliary Semantic Dist. Dist. CUB FGVC-Aircraft ImageNet-100
Learning  Classifier  Learning  Guidance  “\y ™71 "oy Al Old New Al Old  New

603 656 577 542 59.1 51.8 83.0 93.1 779
58.6 723 517 537 629 49.1 828 941 772
638 693 61.1 577 59.8 565 847 94.0 80.0
613 694 573 566 648 525 835 924 789
649 709 619 594 644 569 850 938 803
66.3 718 635 61.7 639 60.6 859 943 81.6

1)
()]
(3)
“
(5
(6)

AN N N
WX N X %
SSNUX %%
N X X X X% %
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K IMPACT OF HYPERPARAMETERS

In this section, we analyze the impact of hyperparameters in our DebGCD framework, including the
depth of the projection network ps, loss weights, and the number of tuned blocks.

Depth of projection network p;. As discussed in the paper, it is essential to disentangle the OOD
and GCD feature spaces due to the differing learning objectives of these two tasks. To assess the
impact of the depth of the projection network p,, we conduct an experiment on the SSB benchmark,
focusing on the number of layers in this MLP network. Here, a depth of 0 denotes the absence of
a projection network, meaning that the two tasks are optimized within the same feature space. As
shown in Tab. 8, incorporating a 1-layer p, results in performance improvements by 1.3%, 1.6%
and 1.1% on CUB, Stanford Cars, and FGVC-Aircraft, respectively. The average GCD performance
across all categories of DebGCD gradually improves as the number of MLP layers increases from 0
to 5. However, extending the MLP to 7 layers yields little to no further improvement in performance.
In our implementation, we therefore adopt a 5-layer MLP for p; in our framework.

Loss weights )4 and )\, 4. For these two loss weights, we first intuitively set the default value
based on existing literature and our hypothesis. Our rationale for selecting values for the loss weights
is as follows: For A4, we take inspiration from the previous literature using OVA classifier Saito
& Saenko (2021). In the paper, the model is fine-tuned with a learning rate of 10~2 , while the
learning rate in the SimGCD baseline is 0.1 (which is 100 times larger than 10~2). To achieve a
similar learning effect, as validated in Saito & Saenko (2021), we scale our Agq; value from 1.0
down to 1/100. Therefore, we set A\;q; = 0.01 by default. For \,q4, the weight of the debiased
classifier, we expect it to play an important role similar to that of the original GCD classifier (where
the loss weight is set to 1.0). Thus, we have defaulted this value to 1.0. After determining the
default values, we conducted experiments on the SSB benchmark regarding the two loss weights by
exploring values around the defaults. For A4y, the range was (0.005, 0.01, 0.02). As for \,q4;, the
range was (0.5, 1.0, 2.0). The impact of ),y is detailed below in Tab. 9, with A,4; set to 1.0. The
impact of \,g; is illustrated below in Tab. 10, with A\zg; set to 0.01. The results are in line with our
hypothesis, indicating that our selected hyperparameters are indeed reasonable.

Table 8: GCD performance on SSB Vaze et al. (2022b) using different number of layers in p;.
CUB Stanford Cars FGVC-Aircraft Average

MLPlayer All Old New All Old New All Old New All
63.6 752 578 623 762 541 59.6 622 583 61.8
649 716 616 639 802 560 607 637 592 63.1
66.0 735 623 647 822 562 61.1 642 595 63.9
663 718 635 653 81.6 574 617 639 60.6 64.4
658 720 627 648 805 573 619 652 603 64.1

~N W= O

Table 9: GCD performance on SSB Vaze et al. (2022b) using different values of Asg;.
CUB Stanford Cars FGVC-Aircraft Average

Asat  All Old New All Old New All Old New All
002 655 732 61.6 643 792 57.1 606 635 59.1 63.5
001 663 718 63.5 653 81.6 574 617 639 60.6 64.4
0.005 658 724 625 649 812 570 621 654 603 64.3

Table 10: GCD performance on SSB Vaze et al. (2022b) using different values of A, ;.
CUB Stanford Cars FGVC-Aircraft Average

Aaat Al Old New All Old New All Old New All
05 643 722 603 636 793 56.1 602 635 586 62.7
1.0 663 718 635 653 81.6 574 617 639 60.6 64.4
20 655 708 628 641 83.0 550 604 635 588 63.3
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Number of tuned blocks. In the baseline configuration Wen et al. (2023), only the last transformer
block of the ViT-B/16 backbone is fine-tuned during training. In contrast, our framework incorpo-
rates additional tasks, including OOD detection and debiased learning, which would require differ-
ent embedding spaces, thus calling for the need of more trainable parameters. In our experiments
on both fine-grained and generic datasets, we explore tuning the last two blocks, and we note that
tuning more than two blocks may lead to instability during training. Furthermore, we observe that
increasing the number of tuned blocks can improve performance on specific datasets, particularly
those that are fine-grained. As shown in Table 11, tuning one additional transformer block leads to
a performance improvement of over 1% on the fine-grained datasets. In contrast, the performance
enhancement on the generic datasets is more modest, at no more than 0.6%. Similar strategies have
also been employed in previous methods, such as Infosieve Rastegar et al. (2023).

Table 11: GCD performance of SimGCD and DebGCD by tuning different numbers of transformer
blocks.

CUB Stanford Cars FGVC-Aircraft ImageNet-100 CIFAR-100
Method  #of tuned blocks All Old New All Old New All Old New All Old New All Old New
SimGCD 1 603 656 57.7 538 719 450 542 59.1 51.8 83.0 931 779 80.1 812 778
SimGCD 2 60.8 658 584 53.6 67.6 49.8 528 56.8 50.8 832 929 783 794 80.1 773
DebGCD 1 65.1 709 622 63.0 802 547 604 65.0 58.1 857 940 815 824 83.6 79.5
DebGCD 2 66.3 71.8 63.5 653 81.6 574 61.7 639 60.6 859 943 81.6 83.0 84.6 79.9
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L STABILITY ANALYSIS

Following the baseline established in Wen et al. (2023), we also assess the stability of the proposed
method across all datasets utilized in our experiments. Tab. 12 reports the average results together
with the standard deviations, over three independent runs. Compared to the baseline results reported
in Wen et al. (2023), we observe that the variance of DebGCD is even smaller, despite achieving
significantly higher performance.

Table 12: Complete results of DebGCD and SimGCD over three independent runs.

SimGCD DebGCD
Dataset All Old New All Old New
CUB 60.3+0.1 65.6£0.9 57.7£0.4 66.4+0.4 72.9+0.6 63.2+0.4

Stanford Cars 538422 71.9+1.7 45.0+2.4 65.2+0.7 81.7x1.2 57.320.6
FGVC-Aircraft 54.2+1.9 59.1#1.2 51.8423 61.74#0.5 659+1.2 59.5+1.1
CIFAR-10 97.1£0.0 95.10.1 98.1+0.1 97.3x0.1 95.0+0.2 98.4+0.1
CIFAR-100 80.1£0.9 81.2+0.4 77.8+2.0 83.1x0.7 84.7+0.7 80.0£0.9
ImageNet-100  83.0+£1.2 93.1+0.2 77.9+1.9 86.1£0.6 94.5+0.5 81.8+0.6
ImageNet-1K  57.1+0.1 77.3#0.1 46.9+0.2 64.9+0.3 82.1+0.2 56.4+0.4
Oxford-Pet - - - 93.2+0.2 86.3£0.1 96.8+0.3
Herbarium19 44.0+0.4 58.0£04 36.4+0.8 44.9+03 59.3+0.3 37.1x0.5

15



M PREDICTION ERROR ANALYSIS

In this section, we provide quantitative analysis on the improvements brought by our method from
the perspective of prediction errors. Particularly, we examine the baseline model’s prediction by
categorizing the errors into four types based on the relationship between the predicted (‘Pred’) and
ground-truth (‘GT’) classes: ‘True Old’, ‘False New’, ‘False Old’, and ‘True New’. ‘True Old’ refers
to incorrectly predicting an ‘Old’ class sample as another ‘Old’ class. ‘False New’ indicates incor-
rectly predicting an ‘Old’ class sample as a ‘New’ class. Conversely, ‘False Old’ means incorrectly
predicting a ‘New’ class sample as an ‘Old’ class, and ‘“True New’ refers to incorrectly predicting
a ‘New’ class sample as another ‘New’ class. From this perspective, our debiased learning method
primarily aims to mitigate the label bias between ‘Old” and ‘New’ classes, thereby reducing the like-
lihood of ‘New’ class samples being predicted as ‘Old’. Consequently, this reduction in bias leads
to a decrease in ‘False Old’ predictions while reducing the errors of all the other three types.

In Fig. 6, we present the ratios of the four types of prediction errors as a proportion of the total num-
ber of samples in the new or old categories across three datasets in the SSB benchmark. As shown
in Fig. 6 (a), the error distributions vary significantly across datasets. Notably, the Stanford Cars
dataset exhibits the highest number (16.5%) of ‘False Old’ samples, explaining why our method
demonstrates the most substantial performance improvement on this dataset. In contrast, the CUB
dataset shows the fewest (8.0%) ‘False Old’ samples, indicating relatively limited potential for per-
formance enhancement. Comparing Fig. 6 (a) and Fig. 6 (b), we can see a significant reduction on
the ratio of ‘False Old’ as well as other three types of errors on all the three datasets.
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Figure 6: Ratios of the four types of prediction errors in GCD on SSB benchmark using SimGCD
and DebGCD with DINO Caron et al. (2021) pre-trained backbone. ‘Pred’ and ‘GT’ refer to the
predicted and ground-truth results, respectively.
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