A APPENDIX

A.1 IMPLEMENTATION DETAILS
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For training all models, we initialize the learning rate at
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0.001 and reduce it by a factor of 0.1 at 50% and 83% of
the total epochs. We utilize a single NVIDIA RTX A6000
GPU for both model training and inference. Training time
for each model varies between 7 to 30 GPU hours, de-
pending on the specific model architecture. For adapters
and reverters, we start with a learning rate of 0.01, reduc-
ing it by a factor of 0.1 after the first epoch. These com-
ponents are trained in pairs, requiring 1 to 5 GPU hours
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depending on the specific encoder and decoder architec-
tures.
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architectures for both adapters and reverters across all output alignment

CP models, as visualized in Figure Al. The dimension (conv Ix1)
of the broadcasting feature map is set to (128,128, 64). (Wour Houpr € o)
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of adapters and reverters vary according to the feature
dimensions of each local model and the broadcasting
feature map dimension. For instance, in the task- and
model-agnostic setting, Agent 1’s feature dimension is
128 x 128 x 64, so we set (Wiy, Hin, Cin) = (Wout, Hout, Cout) = (128,128, 64) for both its adapter
and reverter. For Agent 2, with a feature dimension of 64 x 64 x 256, we configure the adapter
with (Wi, Hin, Cin) = (64,64, 256) and (Woy, Hour, Cour) = (128,128, 64), while the reverter is
set with (Wi, Hin, Cin) = (128,128, 64) and (Wou, Hout, Cout) = (64,64, 256).

Figure Al: Architecture of adapter and
reverter.

Index | Agent 1 Agent 2 Agent 3 Agent 4
Modality | Lidar Lidar Camera Camera
Encoder ‘ PointPillar SECOND EfficientNetBO ResNet101

(Lang et al., 2019) (Yan et al., 2018) (Tan, 2019) (He et al., 2016)
Encoder Param.(M) \ 0.87 3.79 56.85 6.88

Index | Agent 5 Agent 6 Agent 7 Agent 8
Modality | Camera Lidar Camera Lidar
Encoder ‘ ResNet34 VoxelNet EfficientNetB1 PointPillar (large)

(He et al., 2016) (Zhou & Tuzel, 2018) (Tan, 2019) (Lang et al., 2019)
Encoder Param.(M) | 6.51 2.13 66.41 1.91

Index \ Agent 9 Agent 10 Agent 11 Agent 12
Modality \ Camera Lidar Camera Lidar
Encoder ‘ ResNet50 SECOND (large) EfficientNetB2 VoxelNet (large)

(He et al., 2016) (Yan et al., 2018) (Tan, 2019) (Zhou & Tuzel, 2018)
Encoder Param.(M) \ 6.88 4.82 71.43 3.18

Table Al: Modality, encoder, and encoder parameters (M) of each heterogeneous model in the 3D
object detection setting.

3D object detection setting. Under the experiments on 3D object detection task, we prepared 12
heterogeneous models. Table Al displays the Modality, Encoder, and Encoder Parameters (M)
information of each of the 12 heterogeneous models. For model 7, 9, and 11, we enlarge the encoders
by increasing the size of hidden layers. For all heterogeneous models, we choose pyramid fusion
layers proposed by Lu et al. (2024) to be the fusion module and three 1 x 1 convolutional layers for
classification, regression, and direction, respectively.



A.2 ARCHITECTURAL COMPARISON BETWEEN EXISTING FRAMEWORKS

Figure A2 illustrated various frameworks that address heterogeneous CP. Late fusion simply com-
bines agent outputs through post-processing. Calibrator (Xu et al., 2023) enhances this approach by
using calibrators to address domain gaps between heterogeneous agent outputs. End-to-end train-
ing, while effective, lacks scalability due to its requirement of re-training all agents’ models. It also
compromises security and task flexibility by shared fusion models and decoders. HEAL (Lu et al.,
2024) improves upon this by fixing decoders and fusion models, re-training only the encoders, re-
ducing training resources but still facing scalability issues due to the computational cost of encoder
retraining as well as the security issue due to the shared fusion models and decoders. Our proposed
framework, STAMP, introduces a novel approach using lightweight adapter and reverter pairs to
align feature maps for collaboration. The lightweight nature of these components ensures scalabil-

ity, while the maintenance of local fusion and decoders ensures both security and task agnosticism.
This design effectively addresses the limitations of previous methods.

HEAL (Lu et al., 2024)
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Figure A2: Architectural comparison of collaborative perception frameworks: existing approaches
versus our proposed STAMP method. Blue boxes represent models with fixed parameters, while red

boxes indicate models whose parameters are trained during the collaboration process.




A.3 MULTI-GROUP AND MULTI-MODEL COLLABORATIONS SYSTEM
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Figure A3: Comparison of collaborative perception systems: (Left) Single-group system where all
agents collaborate within one group. (Middle) Multi-group single-model system allowing agents to
join only one of multiple collaboration groups. (Right) Multi-group multi-model system enabling
agents to participate in multiple collaboration groups simultaneously. The figure illustrates how
different system architectures impact agent interactions and group formations in autonomous driving
scenarios.

In our experimental findings, we observed a bottleneck effect in CP systems, where the overall sys-
tem performance is constrained by the capabilities of the weakest agent. This limitation underscores
the need for more selective collaboration, leading us to introduce the concept of a Collaboration
Group - a set of agents that collaborate under specific criteria. These criteria are essential for
maintaining the quality and integrity of CP, admitting agents that meet predefined standards while
excluding those with inferior models, potential malicious intent, or incompatible alignments. As
illustrated in Figure A3, we can distinguish between three collaborative system types:

* Single-group systems, where agents either operate independently or are compelled to collaborate
with all others, are susceptible to performance bottlenecks caused by inferior agents and vulnera-
bilities introduced by malicious attackers.

* Multi-group single-model systems, allowing multiple collaboration groups but restricting agents
to a single group because each agent can only equip a single model.

* Multi-group multi-model systems, enabling agents to join multiple groups if they meet the prede-
fined standards.

The multi-group structure offers significant advantages over traditional single-group systems. It en-
hances agents’ potential for diverse collaborations, consequently improving overall performance.
This approach mitigates the bottleneck effect by allowing high-performing agents to maintain ef-
ficiency within groups of similar capability while potentially assisting less capable agents in other
groups. Furthermore, it enhances system flexibility, enabling dynamic group formation based on
specific task requirements or environmental conditions.

However, implementing such a multi-group system poses challenges for existing heterogeneous
collaborative pipelines. End-to-end training approaches require simultaneous training of all models,
conflicting with the concept of distinct collaboration groups. Methods like those proposed by Lu
et al. (2024) require separate encoders for each group, becoming impractical as the number of groups
increases due to computational and memory constraints.

Our proposed STAMP framework effectively addresses these limitations, offering a scalable solu-
tion for multi-group CP. The key innovation lies in its lightweight adapter and reverter pair (approx-
imately 1MB) required for each collaboration group an agent joins. This efficient design enables
agents to equip multiple adapter-reverter pairs, facilitating seamless participation in various groups
without significant computational overhead. The minimal memory footprint ensures scalability,
even as agents join numerous collaboration groups, making STAMP particularly well-suited for
multi-group and multi-model collaboration systems.



A.4 MORE VISUALIZATION RESULTS

Figure A4 and A5 illustrate more feature map and result visualizations before and after collaborative
feature alignment (CFA). Prior to CFA, agents’ feature maps exhibit disparate representations. For
instance, in Figure A4, the pre-fusion feature maps of agents 1, 3, and 4 appear entirely black,
indicating a significantly lower scale compared to agent 2’s feature map. This discrepancy leads
to instability in feature fusion. Post-CFA, the features are aligned to the same domain, resulting in
more coherent fusion and accurate inference outputs.
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Figure A4: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a three-agent scene. A; — A; denotes the feature map aligned from agent ¢’s
domain to agent j’s domain, also represented as Fj;.
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Figure A5: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a four-agent scene. A; — A; denotes the feature map aligned from agent i’s
domain to agent j’s domain, also represented as Fj;.



REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016. 1

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697-12705, 2019. 1

Yifan Lu, Yue Hu, Yiqi Zhong, Dequan Wang, Siheng Chen, and Yanfeng Wang. An extensible
framework for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964,
2024. 1,2,3

Mingxing Tan. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 1

Runsheng Xu, Weizhe Chen, Hao Xiang, Xin Xia, Lantao Liu, and Jiaqi Ma. Model-agnostic multi-
agent perception framework. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1471-1478. IEEE, 2023. 2

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018. 1

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4490-
4499, 2018. 1



	Appendix
	Implementation Details
	Architectural Comparison between Existing Frameworks
	Multi-group and Multi-model Collaborations System
	More Visualization Results


