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ABSTRACT

The stochastic three points (STP) algorithm is a derivative-free optimization tech-
nique designed for unconstrained optimization problems in R%. In this paper, we
analyze this algorithm for three classes of functions: smooth functions that may
lack convexity, smooth convex functions, and smooth functions that are strongly
convex. Our work provides the first almost sure convergence results of the STP
algorithm, alongside some convergence results in expectation. For the class of
smooth functions, we establish that the best gradient iterate of the STP algorithm

converges almost surely to zero at a rate arbitrarily close to 0(%), where T is

the number of iterations. Furthermore, within the same class of functions, we es-
tablish both almost sure convergence and convergence in expectation of the final
gradient iterate towards zero. For the class of smooth convex functions, we estab-
lish that f(67) converges to infycra f(#) almost surely at a rate arbitrarily close
to o(4), and in expectation at a rate of O(%) where d is the dimension of the
space. Finally, for the class of smooth functions that are strongly convex, we es-
tablish that when step sizes are obtained by approximating the directional deriva-
tives of the function, f(67) converges to infycra f(6) in expectation at a rate of
O((1—-£)T), and almost surely at a rate arbitrarily close to o((1 — -£-)T), where
v and L are the strong convexity and smoothness parameters of the function.

1 INTRODUCTION

We are interested in the minimization of a smooth function f : R% — R:

mnin f(6),

where we work within the constraint of not having access to the derivatives of f, relying exclusively
on a function evaluation oracle. The methods used in this framework are called derivative-free meth-
ods or zeroth-order methods (Conn et al., 2009; Ghadimi & Lan, 2013; Nesterov & Spokoiny, 2017;
Larson et al., 2019; Golovin et al., 2020; Bergou et al., 2020). They are increasingly embraced for
solving many machine learning problems where obtaining gradient information is either impractical
or computationally expensive, remaining crucial in applications such as generating adversarial at-
tacks on deep neural network classifiers (Chen et al., 2017; Tu et al., 2019), reinforcement learning
(Malik et al., 2019; Salimans et al., 2017), and hyperparameter tuning of ML models (Snoek et al.,
2012; Turner et al., 2021). Therefore, exploring the theoretical properties of derivative-free methods
is not only of theoretical interest but also crucial for practical applications.

Zeroth-order optimization methods can be divided into two main categories: direct search methods
and gradient estimation methods. In direct search methods, the objective function is evaluated along
a set of directions to guarantee descent by taking appropriate small step sizes. These directions
can be either deterministic (Vicente, 2013) or stochastic (Golovin et al., 2020; Bergou et al., 2020).
In contrast, gradient estimation methods approximate the gradient of the objective function using
zeroth-order information to design approximate gradient methods (Nesterov & Spokoiny, 2017;
Shamir, 2017). A recent and noteworthy zeroth-order method is the Stochastic Three Points (STP)
algorithm (see Algorithm 1), a directed search method with stochastic search directions, introduced
by Bergou et al. (2020). The STP algorithm stands out among zeroth-order methods for its balance
of simplicity and strong theoretical guarantees.
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Algorithm 1 Stochastic Three Points (STP)

1: Input: ' € RY, step size sequence {a; };>1 € (0,00)", probability distribution D on R
2: fort=1,2,...do

3: Generate a random vector s; ~ D,

4 Pt = arg Milge gt ot L ays, 0t —ars} ().

5: end for

Compared to deterministic directed search (DDS) methods, the worst-case complexity bounds for
STP are similar; however, they differ in their dependence on the problem’s dimensionality. For
STP, the bounds increase linearly with the dimension (Bergou et al., 2020), whereas for DDS, they
increase quadratically (Kone¢ny & Richtarik, 2014; Vicente, 2013). Specifically, when the objective
function is smooth, STP requires O(de~?2) function evaluations to get a gradient with norm smaller
than e, in expectation. For smooth, convex functions with a minimum and a bounded sublevel set, the
complexity is O(de™!) to find an e-optimal solution. In the strongly convex case, this complexity
reduces further to O(dloge™!). In all these cases, DDS methods exhibit analogous complexity
bounds but with a quadratic dependence on d, i.e., d instead of d. In comparison to directed
search with stochastic directions, STP also matches the complexity bound derived by Gratton et al.
(Gratton et al., 2015) for the smooth case, which is the only case they address in their work. In
their approach, a decrease condition is imposed to determine whether to accept or reject a step based
on a set of random directions. The Gradientless Descent (GLD) algorithm (Golovin et al., 2020)
is another direct search method with stochastic directions. Golovin et al. show that an e-optimal
solution can be found in O(kQ log(d)log (Re™!)) for any monotone transform of a smooth and
strongly convex function with latent dimension k& < d, where the input dimension is d, R is the
diameter of the input space, and @ is the condition number. When the monotone transformation is
the identity and k& = d, this complexity is higher than the one obtained for the STP algorithm by a
factor of log(d). However, it is important to note that monotone transforms of smooth and strongly
convex functions are not necessarily strongly convex.

Compared to approximate gradient methods, STP matches the complexity bounds of the random
gradient-free (RGF) algorithm (Nesterov & Spokoiny, 2017) (see section 6) across the three cases:
smooth non-convex, smooth convex, and smooth strongly convex. This matching in complexities
is in terms of the accuracy € and the dimensionality d. To our best knowledge, these are the best
known complexities for zeroth-order methods in the three cases.

In practical terms, for classical applications of zeroth-order methods, STP variants demonstrate
strong performance when compared to state-of-the-art methods. For instance, in reinforcement
learning and continuous control, specifically in the MuJoCo simulation suite (Todorov et al., 2012),
STP with momentum (which, in expectation, achieves the same complexity bounds as standard STP,
see Gorbunov et al. (2020)) outperforms methods like Augmented Random Search (ARS), Trust Re-
gion Policy Optimization (TRPO), and Natural Policy Gradient (NG) across environments such as
Swimmer-v1, Hopper-v1, HalfCheetah-v1, and Ant-v1. Even in the more challenging Humanoid-v1
environment, STP with momentum achieves competitive results (Gorbunov et al., 2020). Addition-
ally, in the context of generating adversarial attacks on deep neural network classifiers, the Minibatch
Stochastic Three Points (MiSTP) method (Boucherouite et al., 2024) demonstrates superior perfor-
mance compared to other variants of zero-order methods, that are adapted to the stochastic setting,
such as RSGF (also called ZO-SGD) (Ghadimi & Lan, 2013), ZO-SVRG-Ave, and ZO-SVRG (Liu
et al., 2018).

Within the realm of first-order optimization methods that rely on gradient information, numerous
studies have investigated the almost sure convergence of the Stochastic Gradient Descent (SGD)
algorithm and its variants (Bertsekas & Tsitsiklis, 2000; Nguyen et al., 2019; Mertikopoulos et al.,
2020; Sebbouh et al., 2021; Liu & Yuan, 2022). In contrast, the literature on the almost sure conver-
gence of zeroth-order methods remains less developed compared to that of SGD.

In (Gratton et al., 2015), the authors investigate zeroth-order direct-search methods under a prob-
abilistic descent framework. Specifically, they generate randomly the search directions, while as-
suming that with a certain probability at least one of them is of descent type. For smooth objective
functions, their analysis establishes (in Theorem 3.4) the almost sure convergence of the best iterate
of the gradient norm to zero. However, the analysis does not provide a convergence rate for this
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almost sure convergence result, nor does it guarantee the convergence of the gradient norm of the
last iterate. In our paper, we provide such results for the STP algorithm (see Table 1). (Gratton
et al., 2015) also establish (in Corollary 4.7) a convergence rate O(1/+/T) for the best iterate with
overwhelmingly high probability, but this rate is still not guaranteed almost surely. In our work, we
provide the first almost sure convergence rate of the best iterate for zeroth-order methods (see Ta-
ble 1). More recently, Wang & Feng (2022) explore the convergence of the Stochastic Zeroth-order
Gradient Descent (SZGD) algorithm for objective functions satisfying the Lojasiewicz inequality.
Assuming smoothness, they demonstrated (in Lemma 1) that the gradient norm of the last iterate
converges to zero. Furthermore, in Lemma 2, they proved that the sequence generated by the SZGD
algorithm converges almost surely to a critical point, which is a stronger result, since the gradient
of f is continuous. However, this analysis is limited to Lojasiewicz functions, which, by definition,
satisfy a strong property which is the property essentially used in the analysis of strongly convex
functions.

In this paper, we are interested in studying the almost sure convergence of the STP algorithm. For the
three classes of functions (smooth, smooth convex, and smooth strongly convex), first convergence
results, in terms of expectation, were provided in Bergou et al. (2020). However, it is crucial to note
that ensuring almost sure convergence properties is essential for understanding the behavior of each
trajectory of the STP algorithm and guaranteeing that any instantiation of the algorithm converges
with probability one.

Our Contribution & Related Work. In cases where the only verified assumptions regarding the
function are its smoothness and having a lower bound, Bergou et al. established in their paper
(Bergou et al., 2020, Theorem 4.1) that by using Algorithm 1 and selecting a step size sequence

{%}01 with « > 0, the best gradient iterate converges in expectation to 0 at a rate of O( %)
Expanding on this, we prove that employing a similar step size sequence { P - }i>1 with e € (0, )

results in an almost sure convergence rate of 0(%5), which is arbitrarily close to the rate achieved
2

for the convergence in expectation when ¢ is close to 0 (see Theorem 1). It’s worth noting that a sim-
ilar almost sure convergence result has been established for the SGD Algorithm. For more informa-
tion, refer to (Sebbouh et al., 2021, Corollary 18) and (Liu & Yuan, 2022, Theorem 1). However, it
should be noted that this similar result for the SGD Algorithm is provided for min; <;<7||V f(6%)||?,
while for the STP Algorithm, it is provided for min;<¢<7||V f(#")||. More precisely, for the STP
algorithm, we have min;<;<7 ||V f(6")|| = o(1/T==), while for the SGD algorithm, we have
min,<;<7||Vf(6")|| = o(1/7%%).The issue with both convergence results, whether it’s the one
by Bergou et al. (Bergou et al., 2020, Theorem 4.1) about the convergence in expectation or our first
result about the almost sure convergence, is that they don’t guarantee the gradient of f at the final
point 7" to be small (either in expectation or almost surely). Instead, they assure that the gradient
of f at some point produced by the STP algorithm is small. In our paper, we additionally prove that
the gradient of f at the final point 67" converges to 0 almost surely and in expectation without re-
quiring additional assumptions about the function beyond its smoothness and having a lower bound
(see Theorems 2 and 3). Notably, for the case of the SGD algorithm, the question of the almost sure
convergence of the last gradient iterate has been addressed in various cases. For more information,
refer to Bertsekas & Tsitsiklis (2000) and (Li & Orabona, 2019, Theorem 1).

For smooth convex functions, if f has a global minimum 6* and possesses a bounded sublevel set,
we show that selecting a step size sequence o, = O( ;5 )for some 3 € (0, §)ensures that f (HT)

converges almost surely to f(6*) ata rate of o( 1) forall ¢ € (23, 1) (see Theorem 5). A similar
result, with the same convergence rate and the same criteria for choosing the step size sequence,
is established for the stochastic Nesterov’s accelerated gradient algorithm by Jun Liu et al. in (Liu
& Yuan, 2022, Theorem 3). For the same class of functions and under the same assumptions,
Bergou et al. established in (Bergou et al., 2020, Theorem 5.5) that for a fixed precision € and
a sufficiently large number of iterations 7" on the order of %, by selecting a step size sequence

{w}ﬁl where h is sufficiently small on the order of E[f(#7—1)] — f(6*), one can

get: E[f(01)] — f(6*) < e. Here, the choice of h depends on the quantity ELf (67=1)] which is not
known at the begining. Moreover, the theorem does not guarantee that E[f converges to f (0*)

because the step sizes depend on €. In contrast, in Theorem 4, we show that by selecting a step size
sequence {2 },>1, where « is suitably chosen, E[f(67)] converges to f(6*) ata rate of O(%) .
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For smooth, strongly convex functions, Bergou et al. established in (Bergou et al., 2020, Theorem

6.3) that, for any ¢ > 0, using the step size sequence {w}tﬂ’ where h is small on

the order of /€, the gap between the expected value of the objective function and its infimum stays

- L 0%)—inf,_.a f(0 .
within e accuracy for a number of iterations on the order of log(w).Howeven this

result doesn’t indicate how the gap E[f(67)] —infycga f(0) improves with more iterations and does
not guarantee convergence since the step sizes depend on e. To address this issue, we define the

t —t t
step size sequence as {lf © +thsj',,) —f(6) }1>1 with a suitable h, leading to a convergence rate of

O ((1 = £)T) in expectation, and o (1 — s-5-)T) almost surely for all s € (0, 1) (see Theorems 6
and 7). All of our convergence rates are succinctly presented in Table 1.

Table 1: Summary of convergence rates for the STP algorithm.

Functions Assump Step size Iterate Conv / Rate Ref
Thm 4.1
156 X a>0 min_ ||V (6 E/O (¥4
{5 e 2 IV DI 10 () Bergou et al. (2020)
Smooth
{=*—}t>1,2>0 .
1,56 27T min_ [[VF(6°)]] as. Jo(—1—) Thm 1
56(0,%) 1<t<T T3¢
{at}i>1 Thn 2
2 T m
15,6 Y af <o IV fF(0)] E & as./o (1) Thm 3
32, ap = oo
Smooth, 12356 ay = 2, s suitably chosen 6Ty — f(6%) E/O (%) Thm 4
convex i as. /o ( 1 )
1,2,3,56 ag =0 L B e (0,1 F6TY — £(6™) Ti—€)” Thm 5
(?T47?) ’ 12 Ve € (283,1)
[f(0f+htsp)—F(6")] T
SRALAL LN e E/O((1 —
Smooth, -y 45677 { Lh~* Yoz 16Ty — £(6%) / “L A7) Thm 6
strongly h is large enough = 4L
comex LF(8t+h—tsy)— F(81)]
T lsy)— T
a.s. 1 p—
14567 { Ln—*t Yoz £(6T) — £(6™) as. fo((1 = 5)") Thm 7

h is large enough B = ;%; s € (0,1)

2 PROBLEM SETUP AND ASSUMPTIONS

We are interested in the following optimization problem:

min f(e)v

0cRd

where the objective function f : R? — R is differentiable and bounded from below. In this context,
we work within the constraint of not having access to the derivatives of f, relying exclusively on a
function evaluation oracle.

Throughout the rest of the paper, we assume that the objective function is differentiable and bounded
from below. We consider the following additional assumptions about f:

Assumption 1. f is L—smooth, i.e., Y,y € RY ||V f(x) — Vf(y)||l2 < L]z — yl|2.

Note that Assumption 1, implies the following result (Nesterov, 2013, Lemma 1.2.3):

L
o,y € R |f(y) = f(2) = (VF(2),y = )| < S lly — 2ll3. (1)

Assumption 2. 30" € R, f(0*) = infycpa f(0).

Assumption 3. f is convex and there exists ¢ € R? such that the sublevel set of f defined by c is
bounded, i.e.,

1. Vz,y € RY, f(y) = f(2) + (Vf(2),y — x).
2. There exists c € R% such that L(c) = {x € R? | f(x) < f(c)} is bounded.

Assumption 4. f is p-strongly convex, i.e., there exists a positive constant |1 such that:

Va,y € R f(y) 2 f(@) + (VF(@)y — )+ Ty - all3.

4
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Note that Assumption 4, implies the following result (Nesterov, 2013, Theorem 2.1.8):
1
Vr € RY, 2—||Vf(m)||§ > f(z) — in]Rfd f(y) (Polyak-Lojasiewicz inequality).
1% ye

For the distributions D over R?, we make the following assumptions:

Assumption 5. The probability distribution D on R® satisfies:
1. yp = Esup||s]3] < oo
2. There exists a norm ||.||p on R%, for which we can find a constant up > 0 such that:

Vo € R, Egup|(v, 8)| > pip|lv||p-

In (Bergou et al., 2020, Lemma 3.4), the validity of Assumption 5 has been established for several
distributions including:

(i) For any distribution D on the set {v1, ..., vq} with probabilities P(s = v;) = p; > 0:
YD = ]-7
p— d . . j .
Brvpl(0:5 = Syl > (Vi) ol

(ii) For the normal distribution with zero mean and the d x d identity matrix [ as covariance
matrix, i.e., D ~ N(0, %):

=1,
Eop|(v, 5)] = 2Z|[v]|2.
Assumption 6. Forall s ~ D :P(||s|]]2 <1)=1.

Note that under Assumption 6, we have yp < 1. Finally, we add the following assumption regarding
wp involved in Assumption 5:

Assumption 7. up < 1.

Remark 1. In Section 5, we modify the second condition of Assumption 5 by replacing it with:

There exists a constant up > 0 such that: Yv € R4, Eyop|(v, s)| > up||v]|2.

Since norms are equivalent on R, this condition is equivalent to the second condition of Assump-
tion 5. We note also that Assumption 7 is satisfied for the distribution (ii), and also for (i) when the
dimension d > 2.

Throughout the paper, the abbreviation “a.s.” stands for “almost surely”.

3 CONVERGENCE ANALYSIS FOR THE CLASS OF SMOOTH FUNCTIONS

3.1 CONVERGENCE ANALYSIS FOR THE BEST ITERATE

In this subsection, we will assume that Assumptions 1, 5 and 6 hold true. Under these assumptions,
we establish that for any € > 0, when {6"};>1 is generated by the STP algorithm using the step size
sequence {——};>1 with a > 0, it follows that min; <;<7 ||V f(6")|| converges almost surely to 0
t2 - -
1
TI¢

Lemma 1 that ensures that: » - t%%E NIVf(0Y)|p] < .

at a rate of o ). This result is provided by Theorem 1, which follows from the first finding of

Lemma 1. Assume that Assumptions 1, 5 and 6 hold true. Let {c; }1>1 be a sequence of step sizes
satisfying > oo, a < oo. Let {0'},>1 be a sequence generated by Algorithm 1. Then, the following

results hold: N
{Zt_l aR[|Vf(6")|lp] < oo,
Etoil at||[Vf(0Y)]p < oo as.
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In the Appendix (Lemma 5), we prove that if {X;};>1 is a sequence of nonnegative real num-
bers that is non-increasing and converges to 0, and {a;};>1 is a sequence of real numbers such

that Y _7° o, X, converges, then X7 converges to 0 at a rate of o (1/ Zthl ()q). As a result,

since {min;<7 ||V f(0")|p}r>1 satisfies the conditions of this lemma when >_;°, a? < oo and
o2, ap = oo, we conclude that in this case, the best gradient iterate converges to 0 at a rate of

0 (1 / Zt[:l at>. This result is formally presented in Theorem 1.

Theorem 1. Assume that Assumptions 1, 5 and 6 hold. Let {0'};>1 be a sequence generated by
Algorithm 1, where the step size sequence {c },>1 satisfies the following conditions:

{Z?il a’rZ, < 00,

Zfilat:oo.

Then, we have:
1
. /it o
in [VS(&)]lp =o (le m) as.

In particular, if we choose oy = % witha > 0 and € € (O, %), it follows that:
t27T° X

1<t<T

1
min |[Vf(@)|p =0 (1> a.s.
Tz—¢

In (Bergou et al., 2020, Theorem 4.1), the authors established that by using the STP algorithm with

o

a step size sequence { \/E} , where a > 0, the best gradient iterate converges to 0 in expectation
t>1

at arate of O <%) . The second result of Theorem 1 provides a similar version of this result almost

surely, where both the step sizes and convergence rates are roughly similar.
Remark 2. Since all norms are equivalent in finite dimension, for any norm ||-|| on R%, we can
conclude that by selecting oy = where o > 0 and € € (O, %) the following holds:

_a_
g2+’

min ||Vf(0t)|o< j ) as. .

1<t<T T3¢

Remark 3. In the non-convex setting, the convergence analysis in the previous theorem implies that
min; <;< ||V f(6")|| converges to zero almost surely. However, it remains uncertain whether the

gradient of the last iterate ||V f(07)|| also converges almost surely to 0. In section 3.2, we will
establish the convergence of the last iterate of the gradient, both almost surely and in expectation.

3.2 CONVERGENCE ANALYSIS FOR THE FINAL ITERATE

In this subsection, we will assume that Assumptions 1, 5 and 6 hold true. Under these assumptions,
we establish that the STP algorithm ensures the almost sure convergence of ||V f(67)|| to 0 and the
convergence of E[||V f(67)]|] to 0. This result holds for any step size sequence {a }¢>1 such that:
Y2 af <ocand Y7 a; = oo. The almost sure convergence result is provided by Theorem 2,
while the convergence in expectation is established by Theorem 3. Notably, both of these theorems
are derived from Lemma 1 and Lemma 7 (see the Appendix).

Theorem 2. Assume that Assumptions 1, 5 and 6 hold true. Suppose that the step size sequence

satisfies:
{2?1 a? < o0,

2oy = oo,

Let {0'},>1 be a sequence generated by Algorithm 1. Then, we have:

lim [[V£(67)lp =0 a.s.
T—o0
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Theorem 3. Assume that Assumptions 1, 5 and 6 hold true. Suppose that the step size sequence

satisfies:
Zfil O{% < 0,
(o]
Do Gy = 00.

Let {0'}i>1 be a sequence generated by Algorithm 1. Then, we have:

Jim B[V (07 p] = 0.

Remark 4. In particular, for any € € (0, }), the step size sequence {1 }i>1 with a > 0, satisfies
St

the conditions on step sizes of Theorems 2 and 3.

4 CONVERGENCE ANALYSIS FOR THE CLASS OF SMOOTH CONVEX
FUNCTIONS

In this section we will assume that Assumptions 1 to 3, 5 and 6 hold true. Since f is a real-valued,
continuous, and convex function, it follows that f is a closed proper convex function. Additionally,
Assumption 3 guarantees the existence of a vector ¢ such that the sublevel set of f defined by c is
bounded. Therefore, we can deduce that all sublevel sets of f are bounded, as shown in (Rockafellar,
2015, Corollary 8.7.1). Let ' be the initial vector of the STP algorithm. In particular, the sublevel

set L(0') is bounded, and it forms a compact set of R¢ (because f is continuous).
Let’s denote || - ||% as the dual norm of || - || p, defined for all € R% by: ||0]|% = SUP, cra\ {0} |<‘;79>

[
Since 6 — || — 6*||% is continuous over R? and L(6') is a compact subset of R?, we have:

R:= sup ||0—0"|p < oc.
PESACE

Since f is convex, we have that for all § € L(01):

£6) - 1(67) < (V46,0 — 6% < [V£@)p sup 20—

~———= < R|Vf(0)|p-
veR\ {0} [vlp

l0—0=I%
By the construction of the STP algorithm, for all ¢ > 1, f(6%) < f(0'). Therefore, for all t > 1,
0t € L(6Y), and thus we have:

vt > 1, f(0") = f(07) < R|VF(O)]p- 2

This final result serves as a crucial point for the convergence analysis of Theorem 4 and Theorem 5.

The following Theorems 4 and 5, show the convergence of the final iterate f(67) to the optimal
value with a rate O(d/T') in expectation, and a rate approximately o(1/7") almost surely.

Theorem 4. Assume that Assumptions I to 3, 5 and 6 hold true, and consider a sequence {0"};>1
generated by Algorithm 1, where the step size sequence is defined as {% } > With o > u%'

We have the following bound:
E[f(6T)] - f(6*) <

sl

where

. 30é,uD 1 * La2
a_max( i (f(0") — f(o ))7W>

2R
pp’

In particular, if pup is proportional to %, then by taking o =
the form O (%)

we obtain a complexity bound of
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Note that for the normal distribution (ii) with zero mean and identity covariance matrix , as well as
for the uniform distribution (i) on the canonical basis vectors of R? , 1 is proportional to %.

L and let ¢ > 2 be a constant. If we choose o such

Vd’
2R cR La? _ . cdy
that . < a < 2E we get L) = O(cd). Thus, we obtain the convergence rate O(%5) in

Remark 5. Assume that pp is proportional to

Theorem 4.

Theorem 5. Assume that Assumptions 1 to 3, 5 and 6 hold true. Let {0'},>1 be a sequence gener-
ated by Algorithm 1, where the step size sequence is given by oy = O (tl%) for some [ € (0, é)

We then have the following:

Ve e (28,1), F(67) = £(6%) = o <T11_> as.

5 STRONGLY CONVEX ALMOST SURE CONVERGENCE RATE FOR STP
ALGORITHM

In this section we will assume that Assumptions 1 and 4 to 7 hold true. The main results of this
section are stated in Theorems 6 and 7, which follow from Lemma 3. When step sizes are obtained
by approximating the directional derivatives of the function with respect to the random search di-
rections, we show in Theorem 6 that f(67) converges in expectation to infycga f(6) at a rate of
O((1 — Z5)7), and in Theorem 7, we establish this convergence almost surely at a rate arbitrarily
close to o((1 — 24+)"), where v and L are the strong convexity and smoothness parameters of the
function, and d is the dimension of the space. We recall that a strongly convex function has a unique
minimizer, which we denote by 6*.

The following Lemma 2, controls the decrease per iteration of the value function. It is used to control
the total decrease of the value function after 7" iterations given in Lemma 3.

Lemma 2. Assume that Assumptions 1 and 6 hold true. Let h € (1,00) and let {0'};>1 be a
{ |f(0'+h~"se)—f(6")] }
Lh—t t>1-

sequence generated by Algorithm 1 where the step size sequence used is

Then we have: V0, 1)
V , St L _ot
— 4+ —h 8.
T L
Lemma 3. Assume that Assumptions 1 and 4 to 7 hold true. Let h € (1,00) and let {0'};>1 be a
[F(O +h~"s)—£(0")]
{ Lh—t }t21-

vt > 1, f(O) < f(0") -

sequence generated by Algorithm 1, where the step size sequence used is
Then we have:

9 \T-1 T-1 9 N\ T—1—i
o 22 ST -0 < (1-222) s Y (1- 1) e

Theorem 6. Assume that Assumptions 1 and 4 to 7 hold true. Let h € —L

1_u%u
L

and let {0'};>1 be a sequence generated by Algorithm 1, where the step size sequence used is

{LOh )= F D1y, | Then we have:

L 1
8 2
P2 (1-134) -1

vr 22, B0 - o) < (1-228) [0 - pon)+

]. 3)

In particular, if up is proportional to ﬁ, ie, up = %, for some positive constant K, then by

T
taking h = % we obtain a rate of O <(1 — “jf) ) In the case where K > 1, the rate

B
1-—r-

becomes O ((1 — A)T)
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Theorem 7. Assume that Assumptions 1 and 4 to 7 hold true. Let {0'};>1 be a sequence
generated by Algorithm 1, where the step size sequence used is {lf (9t+h;;itt) —1(@)] ti>1, with

he | ———, 00|, wehave: Vs € (0,1), f(6T) — f(6%) = o ((1 _ siiu)cr) s,
1_M7£M

In particular, if up is proportional to \/LE’ ie, up = \%, for some positive constant K, then for all

2
s € (0,1), we obtain a convergence rate of o((1 — s’%)T). In the case where K > 1, the rate
becomes o((1 — s41)") where s € (0,1).
Remark 6. Note that for the normal distribution (ii) with zero mean and identity covariance ma-
trix, we have up = \/—‘%r. The convergence rates for Theorem 6 and Theorem 7 in this case are

respectively O((1 — ﬂ—%j%)T) and o((1 — s%)T)for any s € (0,1).

For the uniform distribution (i) on the canonical basis vectors of R, we have pp = \/ia. The

convergence rates for Theorem 6 and Theorem 7 in this case are respectively O((1 — +=)
o((1 = s£)T) forany s € (0,1).

6 NUMERICAL EXPERIMENTS

Let’s consider the following optimization problem:

d—1
1 1 1
;Iel%%% f(6) = 5 (61)° + 3 ii_ 1 (Big1 —0;)° + 3 (6,)° — 6,, initial vector: ' = 0,

where d = 500. This objective function was used in Section 2.1 of Nesterov et al. (2018) to prove
the lower complexity bound for gradient methods applied to smooth functions. By running multiple
trajectories for the three algorithms: the STP algorithm, the RGF algorithm (Nesterov & Spokoiny,
2017), and the GLD algorithm (Golovin et al., 2020), the objective is to simulate the convergence
of the last gradient iterate for each trajectory and also illustrate the rate of convergence of the best
gradient iterate.

RGF Algorithm: This algorithm starts with an initial vector ' and iteratively updates it according
t t
to the following rule 6! = 9 — htwut, where u; is a random vector uniformly

Kt
distributed over the unit sphere. In this implementation, we set y; = 10~*. We use the same step
size proposed by the authors of Nesterov & Spokoiny (2017); h; = %, where L < 4 represents the
smoothness parameter of the objective function.

GLD algorithm: This algorithm proceeds as follows: it starts with an initial point 6, a sam-
pling distribution D, and a search radius that shrinks from a maximum value R to a minimum
value 7. The number of radius levels is determined by K = [log, (,Eﬂ For each iteration ¢,
the algorithm performs ball sampling trials, where it samples search directions v* from progres-
sively smaller radii 7, = 27%R, 0 < k < K, and then updates the current point by selecting
the v¥ that results in the minimum value of the objective function. The update step is given by:
O+l = arg My (gt gy, 9t 4ok} f(y). For this algorithm, we use the standard Gaussian distri-

bution D and set 7 = 107° and R = 104,

For the STP algorithm, we set the step sizes to be oy = f(f% and the random search directions s; are

generated uniformly on the unit sphere of R%. The chosen step sizes adhere to the form provided in
the second result of Theorem 1, where € = 0.01. In our experiment, we run 50 trajectories for each
of the three algorithms, all starting from the same initial point 0. We simulate log,,(||V £(67)||2)
as a function of the number of iterations, as well as the elapsed time in seconds. Additionally, to
verify the rate assured by Theorem 1 for the STP algorithm, we simulate 7%-4° min;<7 ||V f(6)]|2
as a function of the number of iterations.

Figure 1 and Figure 2 illustrate the logarithmic decay of the gradient norm with respect to both
iterations and elapsed time, highlighting its convergence to zero across all trajectories for the three
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algorithms. Notably, STP and RGF demonstrate competitive performance, with STP being slightly
better, in terms of the number of iterations and the time required to achieve a given accuracy, outper-
forming the GLD method in both metrics. This similarity between the performance of STP and RGF
reflects their similar theoretical complexity bounds. It is important to note also that at each itera-
tion, the STP and RGF methods require two function evaluations, while the GLD method requires
[log, (£)] function evaluations.

In Figure 3, we observe the convergence of the best gradient iterate to O at a rate of o(ﬁ) across
all trajectories for the three algorithms. In particular, this illustrates the rate obtained for the STP

algorithm.

00 STP Algorithm 00 GLD Algorithm oo RGF Algorithm
-0.2 -0.2 -0.2
__-o04 __ 04 __ 04
»g -0.6 g -0.6 g -0.6
= = =
> -08 > -0.8 > -0.8
8 -10 8 -10 8-10
-1.2 -1.2 -1.2
-14 -1.4 -1.4
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Iteration T Iteration T Iteration T
Figure 1: Logarithmic decay of gradient norm vs. Iterations.
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Figure 2: Logarithmic Decay of gradient norm vs. Time.
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Figure 3: Convergence rate of the best gradient iterate.
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A APPENDIX
Lemma 4. (Bergou et al., 2020, Lemma 3.5) Assume that Assumptions 1, 5 and 6 hold true and let
{0"}1>1 be a sequence generated by Algorithm 1. We have:

t+1 t t t Latz
E[f(07) | 0] < f(07) = poae[VF ()l + —~

Proof of Lemma 1. Lett > 1. By Lemma 4, we have that:
La3

E[f(0°) | 6] < f(6") — cupi [V (") |2 + =+

By taking the expectation, we get: E[f(0'T1)] < E[f(6")] — cupupE[||V £ (6!)||p] + Lgf.
It follows that:

La?

noaiE[|VF(0)llp) < E[f(0)] - E[f(0" )] + =

4)

By construction of the algorithm the sequence {f(6)};>1 is non-increasing, and since we assume
that f is bounded from below, we have that {EE[f(6")]}:>1 is non-increasing and bounded from

12
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bellow, and thus converges. As a result, we have: Y ;- E[f(0%)] — E[f(6""!)] < co. Knowing that
Yoo, a? < oo, we conclude from equation 4, that

> aE[VF(6")]p] < oc.

t=1

We deduce also that E [>°7° | ¢ ||V f(0%)||p] = > o2, v E[||V f(6%)||p] < oo, which implies that:

Zatllvf(9t)llp < ooa.s. .

t=1

O

Lemma 5. Let {X;},>1 be a sequence of nonnegative real numbers that is non increasing and
converges to 0, and let {c }1>1 be a sequence of real numbers such that Ztoil a; X; converges.
Then, we have:

Proof. Forall T > 1, we define Ur = Xp Z _,a; and Ry = > 7 a; X;. We then have:

T
1
Ur —XT2(R *Rz‘+1)z-
Let T > 2. We have:
[P T 1
o =% [V - Y ey
Li=1 to=1 v
r T T4+1
1 1
=X i~ = >R
g ZR i i Xi1‘|
Li=1 1=2
1 R r 1 1
_x L hr  (— —
T Rle XT +;R (XL Xi—l)
T
X7 1 1
=Ri— —R X Ri(— — .
1 X, T41 + TZ (Xz Xi71)

To prove lim7_, + oo Ur = 0, it suffices to show that:

e > R — )
Tﬁu}rloc Ti:2 “Xi Xl

Let ¢ > 0 and Ty > 2 such that for all T' > Tj, we have R < 5. Let " > T}, we have

XTZR <XTZ|R\ ——)+Xr Z L)

=T 2 Ao
_XTimi();Xj_l)*fT(éXln)
XTiZ;Ri();leH;“?;)
SXTi|Ri(£X31)+;.

13
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As limyp_, 4 oo X7 = 0, there exists 77 > Tj such that for all T" > T3,

a 1 1 0 1 1 €
X (= — <X (= — ‘<o
PR - )| S X YRGS
Therefore limy_, ;oo X7 Z;TFZQ Ry( ; - ﬁ) = 0, and we deduce that:

1
XT =0 (T) aST-} “+00.
D1 O
]

The following lemma, which is a classical result about Riemann series, will be needed in the proof
of Theorem 1.

Lemma 6. Forall o € (0,1), we have: 3, =~ 7;1_7:

Proof of Theorem 1. Let us define X7 = min;<7 |V f(6;)||p forall T > 1. Since >, a7 < oo,
according to Lemma 1, we deduce that )~ oy X; < oo a.s. Itis clear that { X7} r>1 is a sequence
of nonnegative real numbers that is non increasing, then, by proving limy_, ; .o X7 = 0 a.s., using

lemma 5, we can deduce that:
1
XT =0 (T) a.s.
Zt:l Qy

Now, we prove that lim X7 = 0a.s. According to Lemma 1, we have Yoo, ol [VF(6Y)|p < o0
—00

a.s. Thus, it follows that:
T
; t .
{(?%1% INFACRLY E a¢} is bounded almost surely.

t=1

. . T
Since lim > ,_, ay = 400, we can conclude that:
t=1
T—+o0

1' Xr= 1 i t = .S.
P X = m mip[VF@)] = 0as

Therefore, we establish the first result of the theorem. The second result is obtained by choosing
{a}4>1 defined by oy = f%% In this case, we have >~ oy = oo, while ;2| o < occ.

Using Lemma 6, we have

—€

=

1
Z té+€ ~

t=1

]
oM

Therefore,

min ||V£(0")||p :0( ! ) a.s.

1<t<T

O

Lemma 7 is first presented in (Alber et al., 1998, Proposition 2) and again in (Mairal, 2013, Lemma
A.5), along with a new proof. We provide a new, simpler proof of this lemma that is more straight-
forward than those presented in these references.

Lemma 7. (Alber et al., 1998, Proposition 2) , (Mairal, 2013, Lemma A.5) Let {a;};>1,{b; }i1>1
be two nonnegative real sequences. We have:
Ztoil atbt < o0,
Z;)ilatzoov :>th? bf:()
—+00
There exists K > 0 such that |by11 — by| < Kay.

14
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Proof of Lemma 7. First, we note that for all ny > 1, we have inf,,>, b, = 0. Indeed, sup-
pose for contradiction that inf,,>,,, b, > 0. In this case, we would have for all n > ng, a,b, >
p infy, >, by, Which implies that the series > a,b,, cannot converge, since Z:O:1 a, = oo and
N frn>nobm > 0. This contradiction implies that for all ny > 1, we have inf, >, b,, = 0.

2
Lete > 0. Let ng > 1 such that for all n. > ng we have Y7 apby < 7.

The goal is to prove that for all n > ng, b, < e. Letn > ng. If b, < 5, then trivially b, < e. Now
assume that b, > 5.

We have infy>,, by = 0, then we can take the smallest index m > n such that b, < 5. We have:

m—1

b — bl < [big1 — bil

i=n

IN
8
&

S —
Therefore, by the triangle inequality, we have:
b < b+ 5 <

Thus, for all n > ng, we have b,, < €, and consequently, we deduce that lim,, , . b,, = 0.

Proof of Theorem 2. Consider C' > 0 satisfying: ||.||p < C||.||2.

Let ¢ > 1. We have that:

V5O = [IVF (0] p] < IVFE™) = V) p
< CL||0" — 6'||5 (because f is L-smooth)
= CLatHStHQ
< CLa; as. (because we assume Assumption 6 holds true)

Therefore, we have that forall ¢ > 1: P (| HV f (o)
Thus: P (vt > 1, |||V f (6'F7)

Iy = IV £ (8)]lp| < CLar) = 1.

lp = V£ (0)]p| < CLar) = 1.

S a|[ V(O ||p < coas, (by Lemma 1 because Yo aF < 00)
oy Qi = 00.

Given that {
Using Lemma 7, with {c }+>1 playing the role of {a;};>1 and {||V f(6")| }:+>1 playing the role of

{bt}+>1, we conclude that:
. T _
TngrrlooHVf(H )p=0 as.

15
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Proof of Theorem 3. Lett > 1. We have that:

E (5 0] ~E V5 ) o) | <E[[197 @)~ 1970415 |
<E[IVS (") - VS (04 ]1o]
< CLE [[|0""" — 6"||2] (because f is L-smooth)
= CLayE || s¢]2]
< CLay (because we assume Assumption 6 holds true),

where in the first inequality, we used Jensen’s inequality. So, we proved that:

21, (B9 (04) )~ EVS (@) p)] < OLo.

Now, given that Y=, o E[||[Vf(0%)|p] < oo (by Lemma 1 because > -, a? < o00), and that
o2, oy = 0o, we use Lemma 7, with {ay }+>1 playing the role of {a; };>1 and {E[||V f(6%)||]}+>1
playing the role of {b;};>1, to conclude that

i B[V (07 0] = 0.
O

Lemma 8. (Liu & Yuan, 2022, Lemma 1) If {Y,},-, is a sequence of nonnegative random vari-
ables adapted to a filtration { F },~ ,, and satisfying:

ElYi1 | F] < (1 —crap) Yy + czozf forall t>1,

where oy = O (t%g) for some B € (O7 %) and c1 and cy are positive constants. Then, for any
e€(26,1):
1
Y=o <t15> a.s.

Proof of Theorem 4. By Lemma 4, we have that:

2
Lo

2
Knowing from equation 2 that: V¢ > 1, f(6") — f(6*) < R||V.f(6")|p, we have:

vt > 1, E[f(0"") | 0'] < f(0") — ppou |V £(6)||p +

L 2
vt > 1 E[f(07) - 0 | 0 < (1B ) (7001 - 5 (07)) + <5
Taking the expectation, and knowing that oy = ¢, we get:
La?

Vi1, E[£(07) — £0)] < (1 SE2)E[£(6) - £(07)] + 5
=0t 41 =04

It € {1,...,[2%2] 41}, 5, = E[f(6") — £(6")] < f(8") — £(67) < (|2%42] +1) L@ Then

3aup f(0') — f(6%) app

OHD 7 ; , because |

vt e {1, [TEP] 1), 6 <

=

Let’s denote a and b as follows: a = max <3a’”’ (f(0Y) — f(67)), 2(&/470521)) and b = £2. We

have:
Vte {1, .. 2D]+1} 5t<¥ 6)

We will prove by induction that:
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For t = [*£E2] + 1, we have that:

Opoupy g < 2.
R t
Lett > [£2]4-1. Assume that §; < ¢ and let’s prove that ;1 < %5. We note that 1 — <£2 > 0.
From equation 5, we get §; < ¢ == 8,41 < f—“b—“—kég‘z We have also the following equivalence:
a aba+La2 a — aba+La2< —a
t 12 22 ~t+1 t2 2t2 T t(t+1)
< —aba + Lo < —at
—aba + — .
2 T t+1
Let’s prove that the last assertion is true. We have:
—at —at
—a< — —s —ab b — 1
< aba+ a(ba — 1) < ]
s _abat La? < —at
—aba + — .
2 T t+1
. . . _ 3o 1 * Lo?
The last implication comes from a(bar — 1) = max | (ba — 1)=2E2(f(0") — f(0)), =5~
>0
We deduce finally that §; 11 < 5. Therefore, we get: VT' > [*£2] + 1, E[f(67)] — f(6*) < &,

and using equation 6, we deduce that:

VI 2 1, E[f(67)] - £(07) < 7.
In particular, if pp is proportional to f’ then by taking a = g, we have:
3au La? %
_ D 1y * _ 1\ * KDy _
0 = max(ZRP (F0) = 10y —y) = max(670") — £0%), =) = O(d),
therefore E[f(67)] — f(0*) = O(£) O

Proof of Theorem 5. By employing the first part of the proof of Theorem 4, we have that:

ve> 1 B0 - 50 |0 < (10l (r0) - p00) + 20

Using Lemma 8, we deduce that when oy = O (715 ) with 6 € (0, 3), we get:

1
Tlfe

Ve € (20,1), f(6T) — f(6") = of ) as.

Proof of Lemma 2. Lett > 1. Using the smoothness property in equation 1, we have:

{f(et +arsi) < f(07) + an(Vf(07), 50) + Saf||se|?
FO" — ause) < f(0") — ar(VF(0F), 50) + 5af]s]?
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Then f(0'1) < f(6%) — au[(V£(6%), s¢)| + La?||s¢||>. By replacing o by its expression, and
using Assumption 6, we have:

0"+ hTsy) — f(0)

L (0" +h7ts) = £(0)
1O+ < 10) L@ 6,501+ 5 (L) s
t —t _ t
< pot) - L0 2 IO g 44t). )
+ L (f(at +h7's) — £(09)] = [(V1(6), htst>|>2
2 Lh~"
L O T ) = FOOI VA0, ksl [(VF(69), h"s0)?
Lh~2t 2Lh—2f
(V0" 01> L (1£(0" +h~ts) = F(0)] = (T F(8), " s0)]\?
e L e T A ( Lh— > o
o UVFO), 80P | L (1F(08+h~ts) = F(0) = (VF(01), h~ts0)] )
A e A ( Lh—t ) .
: Lh=!s][? \ ?
< F(0Y) — \<Vf(gL),8t>|2 % ( Ll?‘t ) a.s. (using property equation 1)
< f(@t) _ ‘<Vf(gtL)75t>|2 + %h—% a.s.
We conclude that: V¢ > 1, f(01F1) < f(0!) — w +Lh ?as.. O

Proof of Lemma 3. Lett > 1. By Lemma 2, we have:

t 2 —2t
JO) < 0" - Wf(gL)’St” + Lh; as.

Using the tower property:
E[[(VF(8)0)[’] = E [Eenn [[(VF (8 50)[" 1 6]
> E[(Bumn [[(VF(0%).50]10)’]

~—

Jensen Inequality

= mBE[[VFE)];]-

Assumption 5

It holds that: E [f (67F1)] — f(6*) <E[f (") — f(6%)] — %E {va (et)H;} + L,

By Assumption 4, we have |V f (Ot)H; >2u (f (6) — f(6*)), then:

2 Lh—2t
(7 (0) - 709)] < (1= S22 ) B (1 () - 00 +
Thus by induction we obtain:
5 \T-1 [Tl o NT-1-i
o 22 B - £ < (1- B ) -+ 30 (1-1BE) e
i=1
O
Proof of Theorem 6. Since h € ( L — ,oo) ,it holds that: VT' > 2, 1 — M > 0.
123t -
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Then, using Lemma 3, we get:

VT > 2, E[f(67) - £(6%)] < (1 _ “D“) e - e+ =

L 8h2 1 — 1
h2(1—“7g“>
2 T—1
L 1
<(1-22) o) - s+ il
h? (1 - %) 1

which gives the desired inequality.

In the particular case where up = %, by replacing h and pp by their formulas, we obtain the

. K2 T
desired rate O ((1 — “dL ) ) O

Proof of Theorem 7. Let s € (0,1), we considera = 1 — s@. By multiplying the inequality (3)
by =7, we get that for all T > 2:

a~ 'L 1 }

w12\ T
Bla T (507) — FON = (o =) (100~ 00) w(1-32) 1)
T

L

As g1 -2 ok = 45— € (0,1), it holds that:
1-s-2
E[Y a " (£(07) = £(61)) = D _Ela™" (£(6") - f(6%))] < oo
T—2 T—2

Therefore: Y7, a~ 7 (f(67) — f(0*)) < 0o a.s., and we conclude that:

fO7) = f(0") =0(a") as.
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