
Published as a conference paper at ICLR 2025

A TRAINING DETAILS

In this section, we provide the training details of our models.

A.1 TRAINING HYPERPARAMETERS

Table 6: Training hyperparameters for the models in Table 1. Step refers to a learning rate schedule
where the initial learning rate is divided by 10 after 80% of the epochs have finished, and cos refers
to a cosine learning rate schedule with a warmup of 10% of the total epochs.

Model Epochs Batch size Learning rate Scheduler

Randomly initialized 1000 32 1e-4 step
MAE 1000 128 1e-4 step
Supervised 1000 32 1e-4 step
DeiT 1000 128 1e-4 step
DINO 1000 128 1e-4 cos
CLIP 1000 128 1e-4 cos
DINOv2 1000 128 1e-4 cos

The training hyperparameters for the models in Table 1 can be found in Table 6. Models in Table 2
and Figure 2 were trained with 1000 epochs, batch size 128, learning rate 1e-4, and using the cos
scheduler described above. The prompt-tuned model in Table 3 was trained with batch size 32, 1000
epochs, learning rate 1e-3, and the step scheduler; the hyperparameters for the other two can be found
in Table 6. The IPC and PONP baselines in Table 4 were trained for 1000 epochs with batch size 128,
learning rate 1e-4, and 1000 epochs. Additionally, PONP used the cos learning rate scheduler. The
methods in Table 5 were trained for 100 epochs with batch size 64, but all other hyperparameters
were the default hyperparameters from Kim et al. (2023).

A.2 INR ARCHITECTURE

Following previous work (Chen & Wang, 2022; Kim et al., 2023; Gu et al., 2023; Lee et al., 2024),
our INR architecture is an MLP with 6 layers of hidden dimension 256, positional encoding with
dimension 40, and ReLU activations.

B METRICS

In this section, we discuss the metrics used in our paper. Our main task of novel view synthesis from
a single view of an object is a task where both image similarity metrics (such as PSNR, SSIM, LPIPS)
and image generation metrics (FID) can provide complementary assessments of novel view quality.
This is because the generated view may be partially determined by shared structures present in both
views, while the other parts are under-determined and need to be generated. Besides PSNR, all other
metrics were implemented using the torchmetrics library with their default parameters.

PSNR PSNR stands for peak signal-to-noise ratio, and is computed with the formula

PSNR(y, ŷ) = →10 log10(MSE(y, ŷ))) (3)

where MSE is the mean squared error. PSNR is a measure of the absolute error between a reconstruc-
tion ŷ and the ground truth y, which makes it less reliable for under- constrained reconstruction tasks
such as novel view synthesis from one view of an object, where there may be many possible plausible
reconstruction.

SSIM Structural similarity index (SSIM) (Wang et al., 2004) computes the similarity of two images
in luminance, contrast, and structure. SSIM is designed to measure the perceived change in structural
information rather than the absolute change measured by PSNR. Wang et al. (2004) shows that SSIM
better correlates with human ratings than PSNR.

14



Published as a conference paper at ICLR 2025

LPIPS LPIPS (Zhang et al., 2018b) measures the similarity between the activations of images
computed by a pre-defined neural network. Zhang et al. (2018b) shows that deep similarities given
by pre-trained neural networks correlate much better with human judgments than PSNR or SSIM.

FID FID (Heusel et al., 2017) measures the how similar the distribution of generated images is to
the distribution of the ground truth images, and is more suited for generative tasks than tasks where
there is a defined ground truth. However, it has drawbacks, as discussed in the main text as well as
Jayasumana et al. (2024).

C COMPARISON TO PREVIOUS RESULTS

Table 7: Comparison of the results in Table 1 to previously published results. * indicates that the
result was obtained from previous literature by averaging the performance of separate models for the
three different classes. Previous results are shown in the first half of the table, while our results are
shown in the second half of the table.

Model PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

LearnIt (Tancik et al., 2020) 21.33* - - -
Trans-INR (Chen & Wang, 2022) 22.07* - - -
Trans-INR (repr. by Kim et al. (2023)) 22.04* - - -
PONP (Gu et al., 2023) 22.14* - - -
IPC (Kim et al., 2023) 22.30* - - -

Randomly initialized 20.862 0.8357 0.1511 0.2751
MAE (He et al., 2022) 20.701 0.8312 0.1753 0.2866
Supervised (Dosovitskiy et al., 2020) 21.324 0.8501 0.0966 0.1516
DeiT (Touvron et al., 2021) 21.587 0.8530 0.1125 0.1860
DINO (Caron et al., 2021) 21.737 0.8555 0.1101 0.1810
CLIP (Radford et al., 2021) 21.770 0.8556 0.1126 0.1834
DINOv2 (Oquab et al., 2023) 22.095 0.8609 0.1063 0.1705

In Table 7, we compare our results for single-view novel view synthesis (Tab. 1) on the LearnIt
ShapeNet dataset (Tancik et al., 2021) to previously published results from LearnIt (Tancik et al.,
2021), Trans-INR (Chen & Wang, 2022), PONP (Gu et al., 2023), and IPC (Kim et al., 2023) which
all use the same INR architecture. We note that these numbers are not directly comparable, as our
numbers are obtained on the harder task of learning all three categories simultaneously and without
being able to tokenize NVS-specific auxiliary information such as poses. Compared to previous
Transformer-based methods (Chen & Wang, 2022; Gu et al., 2023; Kim et al., 2023), our method uses
a ViT/B-16 while previous methods use a smaller 6 layer Transformer architecture. We also note that
the performance of the Transformer hypernetwork baselines Chen & Wang (2022); Gu et al. (2023);
Kim et al. (2023) is significantly degraded in the combined class setting, especially IPC (see Tab. 4).

D LIMITATIONS

One limitation of our method is we do not tokenize task-specific information such as pose and
camera parameters for novel view synthesis. Previous results suggest that this may further improve
performance. Another limitation is that we have only used the simple volume renderer and simple
NeRF Mildenhall et al. (2021) of Tancik et al. (2020), but better results could be obtained by using
a more sophisticated volume renderer and INR. Another limitation is that we only investigate fine-
tuning and freezing the foundation model backbone, but other approaches may perform better. We
also were not able to investigate using larger datasets such as Objaverse (Deitke et al., 2023).

E PARAMETER-EFFICIENT FINE-TUNING

In this section, we make a preliminary investigation of parameter-efficient fine-tuning (PEFT) methods
as an alternative to full fine-tuning and freezing. The intuition behind using PEFT is to avoid potential

15



Published as a conference paper at ICLR 2025

Table 8: Comparison of the four different training strategies, including LoRA Hu et al. (2022), using
pre-trained DINO (Caron et al., 2021) on the NVS task. We find that LoRA models outperform
prompt-tuned (frozen encoder) models in all metrics with only 2M more parameters, while performing
second-best overall with only 2.4% of the parameters of a fully fine-tuned model.

Method Trainable Parameters PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

Randomly initialized 87.3M (100%) 20.862 0.8357 0.1511 0.2751
Frozen 100K (0.11%) 21.035 0.8335 0.1767 0.3212
LoRA Hu et al. (2022) 2.1M (2.41%) 21.246 0.8397 0.1678 0.3052
Fine-tuned 87.3M (100%) 21.737 0.8555 0.1101 0.1810

Table 9: Comparison of hypernetwork generalizability to classes unseen during training using random
initialization, fine-tuning from DINOv2 (Oquab et al., 2023), prompt tuning with frozen DINOv2,
and LoRA Hu et al. (2022). Each method was trained with only two of the classes in the ShapeNet
NVS dataset and evaluated on the third, unseen class. The best metrics are highlighted in bold. In the
last section, the average over all settings is reported for each of the methods.

Method Training ↔ Test PSNR (↑) SSIM (↑) LPIPS (↓) FID (↓)

Randomly initialized cars, chairs ↔ lamps 17.377 0.7959 0.1898 0.1179
Frozen cars, chairs ↔ lamps 18.346 0.7972 0.2941 0.3033
Fine-tuned cars, chairs ↔ lamps 17.474 0.7977 0.1903 0.0956

LoRA Hu et al. (2022) cars, chairs ↔ lamps 18.184 0.8038 0.2437 0.2248

Randomly initialized cars, lamps ↔ chairs 13.163 0.6212 0.3751 1.0199
Frozen cars, lamps ↔ chairs 13.536 0.6112 0.4279 1.0017
Fine-tuned cars, lamps ↔ chairs 13.322 0.6238 0.3845 0.9680

LoRA Hu et al. (2022) cars, lamps ↔ chairs 13.077 0.6206 0.3848 0.9775

Randomly initialized chairs, lamps ↔ cars 15.431 0.7521 0.2987 0.3276
Frozen chairs, lamps ↔ cars 15.503 0.7465 0.3607 0.3623
Fine-tuned chairs, lamps ↔ cars 15.382 0.7692 0.2310 0.1548

LoRA Hu et al. (2022) chairs, lamps ↔ cars 16.432 0.7704 0.3094 0.3362

Randomly initialized Average 15.324 0.7231 0.2879 0.4885
Frozen Average 15.795 0.7183 0.3609 0.5558
Fine-tuned Average 15.393 0.7302 0.2686 0.4601

LoRA Hu et al. (2022) Average 15.898 0.7316 0.3126 0.5128

catastrophic forgetting, as hypothesized in Section 3.5. To do this, we perform parameter-efficient
fine-tuning using low-rank adaptation (LoRA) Hu et al. (2022).

As shown in Figure 8, LoRA outperforms freezing the pre-trained encoder in all metrics while
not using many more parameters (2.1M vs 0.1M parameters, respectively). LoRA also performs
second-best overall, while only having 2.4% of the parameters of the best model, the model trained
with full fine-tuning, and outperforming the model trained from a random initialization.

In the generalization setting (Table 9), we find that on average, LoRA performs the best in PSNR and
SSIM, while full fine-tuning performs the best in LPIPS and FID. The overall performance of LoRA
seems to suggest that LoRA may be able to mitigate potential catastrophic forgetting. We also find
that, as in the previous section, LoRA models outperform the frozen encoder models in all metrics.
We also find that models which update all the parameters perform clearly better in LPIPS and FID,
and that this is a general trend. Further analysis is needed to determine the cause for this.

16


	Introduction
	Background and Setup
	Experiments
	Experimental Setup
	Tasks
	Main Results
	Foundation models increase hypernetwork performance
	Foundation models improve hypernetwork generalizability to unseen classes
	Foundation models improve hypernetwork data efficiency
	Frozen foundation models enable parameter efficient hypernetworks
	Scaling laws for hypernetworks
	Robustness between algorithms and modalities

	Related Works
	Conclusion
	Training details
	Training hyperparameters
	INR architecture

	Metrics
	Comparison to previous results
	Limitations
	Parameter-Efficient Fine-tuning

