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A ADDITIONAL COMMENTS ON EXPERIMENTAL ASPECTS

Here we slightly expand on the comment about computational complexity in the main text, and give
more details about the cancer simulation we use from Bica et al. (2020); Geng et al. (2017); Seedat
et al. (2022); Vanderschueren et al. (2023).

A comment on computational complexity: As commented in the main text, the per-iteration runtime
of EDQ is similar to that of FQE, which is a common tool in large-scale offline RL problems; for
example, Paine et al. (2020); Voloshin et al. (2021) use it in benchmarks and evaluations. The
difference in computation times between EDQ and FQE is due to sampling from the target policy,
or more accurately P̃ a

t , in order to draw the treatments used in the Q-update, i.e., ω and H̃t+ω in
algorithm 2. In most applications, the added complexity due to this difference is small relative to
the cost of evaluating the Q-function and its gradients. In turn, the cost of function evaluation is the
same for FQE and EDQ. The computational complexity of sampling from P̃ a

t depends on how it
is represented and implemented. For instance, we may specify policies by allowing evaluations of
εa(u|Hu), and sample using the thinning algorithm (Lewis and Shedler, 1979; Ogata, 1981); with
neural networks that allow sampling the time-to-next-event (e.g., see (McDermott et al., 2023; Nagpal
et al., 2021) for examples of event time prediction); or with closed-form decision rules. For example,
in the time-to-failure simulation, to determine treatment times we sample exponential variables every
times the vital feature crosses a certain threshold.

Cancer simulator: The tumor growth simulation we use is adapted from Bica et al. (2020); Melnychuk
et al. (2022); Seedat et al. (2022) and is based on the work of Geng et al. (2017). Tumor volumes
V (t) are simulated as finite differences from the following differential equation,

dV (t)

dt
=




ϑ log

(
K

V (t)

)

︸ ︷︷ ︸
Tumor growth

→ ϖcC(t)︸ ︷︷ ︸
Chemotherapy

→
(
ϱrd(t) + ϖrd(t)2

)
︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise




V (t).

Here C(t) is the chemotherapy concentration, d(t) represents the level of radiothearpy.
ϑ, K, ϖc, ϱr, ϖr are effect parameters drawn for each patient from a prior distribution described
in Geng et al. (2017), and et ↑ N (0, 0.0001) is a noise term. To create irregularly sampled ob-
servations of the tumor volume, at each time step we draw a value from a Bernoulli distribution
to decide whether the trajectory contains the tumor volume at this time step or not. The success
probability is a function of the average tumor volume over the most recent 15 volumes (both observed
and unobserved). If we denote a missing value by ↓ and the observation at timestep t by Xt (which
equals ↓ if there is no sample at this timestep and V (t) otherwise), then sampling times are drawn
according to the following probabilities:

p(Vt ↔= ↓|Ht) = ς

(
V̄t→15:t

Vmax
→ 1.5

)

The policies we use to decide on treatments draw binary decisions of whether or not to apply
chemotherapy and radiotherapy at each timestep. Denoting these decisions by random variables Ct

and dt, they are drawn according to P (Rt = 1|Ht) = ς (φ · (vlast → ϖ) + t → tlast), where vlast is the
last observed volume before time t and tlast is the last time that treatment was applied before t. The
same probabilities are applied for dt. For more details on the specifics of the simulation, see the code
implementation.

B PROOFS

We begin with some notation and additional definitions, in appendix B.2 we prove the consistency
result for our method, and in appendix B.3 we give its discrete-time version. To avoid cluttered
notation and longer proof, we will give the proof of theorem 1 for unmarked processes. Adding a
distribution of marks is a trivial extension that does not alter the main steps of the derivation.

B.1 NOTATION AND DEFINITIONS

For a multivariate point process we use the following notations:
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• ε•(·) is the sum


e εe(·), in our case this will include the components e ↗ {a, x, y}.
• For any s > t and any distribution or intensity, e.g. ε, we will use the conditioning ε(·|Hs = Ht)

to denote the event where jumps until time t + ω are those that appear in Ht. That is, no events
occur in the interval (t, s].

• Ht ↘ {(t + ω, e)} is the event in which jumps until time t + ω are those that appear in Ht, and
the next jump after that happens at time t + ω and is of type e (i.e. Ne(t + ω) = Ne(t) + 1 and
Ne(t + s) = Ne(t) for s ↗ (0, ω)).

• Given a trajectory H̃ and time t, we define ωe(t) = min{s → t : s > t, (s, ·) ↗ H̃
e
} as

the time gap from time t to the first jump of process Ne in trajectory H after t, that is for
e ↗ {x, y, a, aobs}.
Note: This is a slight abuse of notation from the main paper, where we defined ω

H̃
(t) =

min{u → t : u > t, (u, ·) ↗ H̃
a,aobs}: dependence on H̃ is omitted and will be included

whenever the trajectory is not clear from context, and we add a superscript (e.g. ωa,aobs) to
specify the type of event we look for.

• Since the processes Nx, Ny play a similar role throughout the derivation, as the parts of
the process whose intensities are invariant under the intervention, we will shorten notation to
εv(t+ω|Ht+ω)EP [Y |Ht ↘ {(t + ω, v)}] := εx(t+ω|Ht+ω)EP [Y |Ht ↘ {(t + ω, x)}]+εy(t+
ω|Ht+ω)EP [Y |Ht ↘ {(t + ω, y)}] and ωv := ωx ≃ ωy .

We assume that all processes have well-defined densities and intensity functions, and that P is
absolutely continuous w.r.t. Pobs, P ⇐ Pobs. This means that the conditional expectations taken
w.r.t. P , which we use in our derivation, are well defined. We also adopt the convention where Ne(t)
is almost surely finite for any t ↗ [0, T ] and e ↗ {a, x, y} (Andersen et al., 2012). This means that
the number of events in the interval [0, T ] is countable. We also use the notation 1[·] for the indicator
function that returns 1 if the condition inside it is satisfied and 0 otherwise.

B.2 PROOF OF FORMAL RESULTS

Below we prove theorem 1 where the result, eq. (2), implies that performing dynamic programming
using the Q-function from the earliest disagreement time between observed data, and the data sampled
from the target distribution, results in a correct estimator. We derive that equation from the lemma
below, which is similar to a tower property of conditional expectations with respect to the first jump
that occurs in any component of the process.
Lemma 1. Let P, Pobs be multivariate marked decision point processes, P̃ the corresponding
augmented process, t ↗ [0, T ), and Ht a history of events that is measurable w.r.t P . It holds that

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


1

ωa(t) < ωv(t) ≃ ωaobs(t)


EP [Y |Ht ↘ (t + ωa(t), a)] +

1

ωv(t) < ωa(t) ≃ ωaobs(t)


EP [Y |Ht ↘ (t + ωv(t), v)] +

1

ωaobs(t) < ωa(t) ≃ ωv(t)


EP


Y |Ht+ωaobs (t) = Ht


+

1

ωaobs(t) ≃ ωa(t) ≃ ωv(t) > T → t


EP [Y |HT = Ht]


(4)

Proof. Note that all the conditional expectations in the above expression exist since P ⇐ Pobs.
Denoting the next jump time with a variable Tnext and its type by Enext, when conditioning on some
history Hs, the law of total probability suggests that P (Y |Ht) =

 
e↓{a,x,y} P (Y |Ht, Tnext = t+

ω, Enext=e)P (Tnext = t + ω, Enext=e|Ht)dt. In point processes, likelihoods of the form P (Tnext =

t+ ω, Enext = e|Ht) are given by exp{→
 t+ω

t ε•(s|Hs = Ht)} ·εe(t+ ω|Ht+ω = Ht). Expanding
EP [Y |Ht] with the law of total probability and these likelihoods, while accounting for the option
that no jump occurs in (t, T ], we obtain the following expression.

EP [Y |Ht] = exp


→

 T

t
ε•(s|Hs = Ht)


EP [Y |HT = Ht] +

 T→t

0
exp


→

 t+ω

t
ε•(s|Hs = Ht)ds
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εa(t + ω|Ht+ω = Ht)EP [Y |Ht ↘ {(t + ω, a)}] +

εx(t + ω|Ht+ω = Ht)EP [Y |Ht ↘ {(t + ω, x)}] +

εy(t + ω|Ht+ω = Ht)EP [Y |Ht ↘ {(t + ω, y)}]

dω. (5)

Next we write down each item in eq. (4),

E
H̃↑P̃ (·|Ht)


1

ωa(t) < ωv(t) ≃ ωaobs(t)


· E [Y |Ht ↘ (t + ωa(t), a)]


=

 T→t

0
εa(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa(s|Hs = Ht)ds}

exp{→

 t+ω

t
εobs,•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, a)] dω =

 T→t

0
εa(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}

exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, a)] dω =

 T→t

0
εa(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, a)]

· (1 → 1 + exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds})dω. (6)

The first equality simply expands the expectation as an integration over all possible stopping times for
Na (according to the definition of P̃ , see definition 4). The second equality holds since the intensities
εx

obs, ε
y
obs are equal to εx, εy respectively. Then finally we simply add and subtract 1 from the last

item. Similarly, for the second item in eq. (4)

E
H̃↑P̃ (·|Ht)


1

ωv(t) < ωa(t) ≃ ωaobs(t)


· E [Y |Ht ↘ (t + ωv(t), v)]


=

 T→t

0
εv(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, v)]

· (1 → 1 + exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds})dω. (7)

The last item in eq. (4) is

E
H̃↑P̃ (·|Ht)


1

ωaobs(t) ≃ ωa(t) ≃ ωv(t) > T → t


· EP [Y |HT = Ht]


=


1 → 1 + exp


→

 T

t
εa

obs(s|Hs = Ht)


exp


→

 T

t
ε•(s|Hs = Ht)ds


EP [Y |HT = Ht]

(8)

Adding up eq. (6), eq. (7) and eq. (8) while pulling out all the items multiplied by 1 to the last brackets
in the bottom expression, we get,

E
H̃↑P̃ (·|Ht)


1

ωa(t) < ωv(t) ≃ ωaobs(t)


· EP [Y |Ht ↘ (t + ωa(t), a)] +

1

ωv(t) < ωa(t) ≃ ωaobs(t)


· EP [Y |Ht ↘ (t + ωv(t), v)] +

1

ωaobs(t) ≃ ωa(t) ≃ ωv(t) > T → t


· EP [Y |HT = Ht]


=

 T→t

0
εa(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, a)]

· (→1 + exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds})dω
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+

 T→t

0
εv(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, v)]

· (→1 + exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds})dω



+


exp


→

 T

t
ε•(s|Hs = Ht)ds


EP [Y |HT = Ht]

·


→ 1 + exp


→

 T

t
εa

obs(s|Hs = Ht)



+

 T→t

0
εa(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, a)]

+

 T→t

0
εv(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}E [Y |Ht ↘ (t + ω, v)]

+ exp


→

 T

t
ε•(s|Hs = Ht)ds


EP [Y |HT = Ht]


.

The items in the last brackets equal the right-hand-side of eq. (5). Plugging this in we rewrite,

E
H̃↑P̃ (·|Ht)


1

ωa(t) < ωv(t) ≃ ωaobs(t)


· EP [Y |Ht ↘ (t + ωa(t), a)] +

1

ωv(t) < ωa(t) ≃ ωaobs(t)


· EP [Y |Ht ↘ (t + ωv(t), v)] +

1

ωaobs(t) ≃ ωa(t) ≃ ωv(t) > T → t


· EP [Y |HT = Ht]


=

EP [Y |Ht] +

→


1 → exp


→

 T

t
εa

obs(s|Hs = Ht)ds


exp


→

 T

t
ε•(s|Hs = Ht)ds


EP [Y |HT = Ht]

→

 T→t

0


εv(t + ω|Ht+ω = Ht)EP [Y |Ht ↘ (t + ω, x)]

+εa(t + ω|Ht+ω = Ht)EP [Y |Ht ↘ (t + ω, a)]


· exp{→

 t+ω

t
ε•(s|Hs = Ht)ds} ·


1 → exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}


dω. (9)

Note that we have,

1 → exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds} =

 t+ω

t
εa

obs(s|Hs = Ht) exp{→

 s

t
εa

obs(s|Hs = Ht)du}ds, (10)

because the left-hand-side is 1 minus the probability that Nobs
a does not jump in the interval (t, t + ω],

and the integration on the right hand side is the probability that the process jumps at least once (where
the first jump is at time s).

Next, we write the third item of eq. (4) to see that it cancels the residual above in eq. (9).

E
H̃↑P̃ (·|Ht)


1

ωaobs(t) < ωa(t) ≃ ωv(t)


· E [Y |Ht+ωaobs = Ht]


=

 T→t

0
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}
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exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}EP [Y |Ht+ω = Ht]dω. (11)

We expand EP [Y |Ht+ω = Ht] again by towering expectations w.r.t to the first jump after t + ω,

EP [Y |Ht+ω = Ht] =

 T

t+ω


εa(s↔|Hs = Ht)EP [Y |Hs→ = Ht ↘ (s↔, a)] +

εv(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, v)]


exp{→

 s→

t+ω
ε•(u|Hu = Ht)du}ds↔

+ EP [Y |HT = Ht] exp{→

 T

t+ω
ε•(u|Hu = Ht)du}

Multiplying the left hand side by exp{→
 t+ω

t ε•(s|Hs = Ht)ds} we get a similar item where the
integration on ε• starts from t instead of t + ω,

exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}EP [Y |Ht+ω = Ht] =

 T

t+ω


εa(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, a)] +

εv(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, v)]


exp{→

 s→

t
ε•(u|Hu = Ht)du}ds↔

+ EP [Y |HT = Ht] exp{→

 T

t
ε•(u|Hu = Ht)du}

Let us denote the gray item by (⇒), and multiply by the observed part in eq. (11). In the first equality
we will pull the integration on s↔ outside, then we will change the order of integration, change
variables by a constant shift (ω↔ = s↔ → t, s̃ = ω + t), and push one integration back inside.

 T→t

0
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds} · (⇒) =

 T→t

0
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}·

 T

t+ω


εa(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, a)] +

εv(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, v)]


exp{→

 s→

t
ε•(u|Hu = Ht)du}ds↔


dω

=

 T→t

0

 T

t+ω
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}·


εa(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, a)] +

εv(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, v)]


exp{→

 s→

t
ε•(u|Hu = Ht)du}ds↔dω

=

 T

t

 s→
→t

0
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}·


εa(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, a)] +

εv(s↔|Hs→ = Ht)EP [Y |Hs→ = Ht ↘ (s↔, v)]


exp{→

 s→

t
ε•(u|Hu = Ht)du}dωds↔

=

 T→t

0

 t+ω→

t
εa

obs(s̃|Hs̃ = Ht) exp{→

 s̃

t
εa

obs(s|Hs = Ht)ds}·
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εa(t + ω↔|Ht+ω→ = Ht)EP [Y |Ht+ω→ = Ht ↘ (t + ω↔, a)] +

εv(t + ω↔|Ht+ω→ = Ht)EP [Y |Ht+ω→ = Ht ↘ (t + ω↔, v)]

·

exp{→

 t+ω→

t
ε•(u|Hu = Ht)du}ds̃dω↔

=

 T→t

0


εa(t + ω↔|Ht+ω→ = Ht)EP [Y |Ht+ω→ = Ht ↘ (t + ω↔, a)] +

εv(t + ω↔|Ht+ω→ = Ht)EP [Y |Ht+ω→ = Ht ↘ (t + ω↔, v)]

·

exp{→

 t+ω→

t
ε•(u|Hu = Ht)du}

 t+ω→

t
εa

obs(s̃|Hs̃ = Ht) exp{→

 s̃

t
εa

obs(s|Hs = Ht)ds}ds̃


dω↔

Plugging everything back into eq. (11), we color in red the same item colored red above, where
we change the name of variables back from ω↔, s̃ to ω, s for convenience. The remaining item in
the equation is obtained by collecting all the items that multiply EP [Y |HT = Ht] in the obtained
expression.

E
H̃↑P̃ (·|Ht)


1

ωaobs(t) < ωa(t) ≃ ωv(t)


E [Y |Ht+ωaobs = Ht]


=

 T→t

0


εa(t + ω|Ht+ω = Ht)EP [Y |Ht+ω = Ht ↘ (t + ω, a)] +

εv(t + ω|Ht+ω = Ht)EP [Y |Ht+ω = Ht ↘ (t + ω, x)]


exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}

 t+ω

t
εa

obs(s|Hs = Ht) exp{→

 s

t
εa

obs(u|Hu = Ht)du}ds


dω

+

 T→t

0
εa

obs(t + ω|Ht+ω = Ht) exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}dω


·

EP [Y |HT = Ht] exp{→

 T

t
ε•(s|Hs = Ht)ds} =

 T→t

0


εa(t + ω|Ht+ω = Ht)EP [Y |Ht+ω = Ht ↘ (t + ω, a)] +

εv(t + ω|Ht+ω = Ht)EP [Y |Ht+ω = Ht ↘ (t + ω, x)]


exp{→

 t+ω

t
ε•(s|Hs = Ht)ds}


1 → exp{→

 t+ω

t
εa

obs(s|Hs = Ht)ds}


dω

+


1 → exp{→

 T

t
εa

obs(s|Hs = Ht)ds}


· EP [Y |HT = Ht] exp{→

 T

t
ε•(s|Hs = Ht)ds}.

In the last equality we plugged in eq. (10). Now it can be seen that the above expression cancels with
the residual of eq. (9), which means that eq. (4) holds as claimed.

As we explain in the sequel, theorem 1 follows directly from the lemma below.
Lemma 2. For any t ↗ [0, T ) and k ↗ N, define ωk(t) > 0 such that t + ωk(t) is the time of
the k-th event after t in a trajectory H̃, where ω0(t) = 0 as an edge case.7 That is, assuming
H̃ = {(tj , vj)}j↓N then ωk

H
(t) := min{tj → t : tj→k+1 > t}. Analogously, we define ωk,e(t) as

ωk
H̃e

(t), which is the k-th event of type e. For all d ↗ N+ we have that

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


(12)

7as explained in appendix B.1, the full notation should be ωk
H̃
(t), but H̃ will be clear from context.
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d

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωa(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]



+ 1

T → t < ωd,v(t) ≃ ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,T ] ]

+ 1

ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωd,v(t)]


.

Now let us recall theorem 1 and prove it, assuming that lemma 2 holds. Then we will prove lemma 2,
which completes the proofs of our claims.
Theorem 1. Let Pobs be a marked decision point processes, P the process obtained by replacing the
policy with (εa, ↼), and P̃ the augmented process obtained from P, Pobs in definition 4. Further, let
t ↗ [0, T ), and Ht measurable w.r.t P . Under Assumption 2, we have that

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


EP


Y

 Ht+ω
H̃

(t) = Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]


. (2)

Proof of theorem 1. Examine eq. (12) when d ⇓ ⇔, because we assume the number of events is
finite it holds that

lim
d↗↘

P̃
(
ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t|Ht

)
= 0.

That is because otherwise, the next treatments should occur after an infinite number of events, and we
need to have infinitely many observations before time T → t. By convention, we define ωk,v(t) = ⇔

whenever there fewer than k events of type v in the interval (t, T ]. Therefore, also due to the finite
amount of events in (t, T ], it holds that

lim
d↗↘

P̃
(
T → t < ωd,v(t) ≃ ωaobs(t) ≃ ωa(t)|Ht

)
= lim

d↗↘

P̃ (T → t < ωaobs(t) ≃ ωa(t)|Ht) .

Then we have,

lim
d↗↘

E
H̃↑P̃ (·|Ht)



d

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωa(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]



+ 1

T → t < ωd,v(t) ≃ ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,T ] ]

+ 1

ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωd,v(t)]


=

lim
d↗↘

E
H̃↑P̃ (·|Ht)



d

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωa(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]



+ 1

T → t < ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,T ] ]



Note that the limit when d ⇓ ⇔ exists since from lemma 2 the expectation has the same value for
any value of d. Next we make two observations:
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• The conditioning in the EP [Y | . . .] terms can be rewritten as Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]
for all items.

This is because by definition of ω
H̃

(t) as min{u→ t : u > t, (u, ·) ↗ H̃
a,aobs}, or ω

H̃
(t) = T → t

when the set is empty,

1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


= 1 ↖ ω

H̃
(t) = ωa(t),

1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


= 1 ↖ ω

H̃
(t) = ωaobs(t),

1

T → t < ωaobs(t) ≃ ωa(t)


= 1 ↖ ω

H̃
(t) = T → t.

In the next step we will replace these times with ω
H̃

(t) for all items.

• All the events in the indicators are mutually exclusive, and exactly one of them occurs for each
H̃. This is since ωa(t) ≃ ωaobs(t) either occurs between the k → 1 and k-th event of type v for
some value of k, or ωa(t) ≃ ωaobs(t) > T → t.

Combining these observations into the expressions we developed for EP [Y |Ht], we conclude the
proof,

EP [Y |Ht] =

lim
d↗↘

E
H̃↑P̃ (·|Ht)



d

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωa(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]



+ 1

T → t < ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,T ] ]


=

lim
d↗↘

E
H̃↑P̃ (·|Ht)



d

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]



+ 1

T → t < ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]
]


=

E
H̃↑P̃ (·|Ht)


EP [Y |Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]
]


Next, let us complete the proof of the required lemma that we assumed to hold.

Proof of lemma 2. For d = 1, eq. (12) is exactly eq. (4) which we already proved in lemma 1, and
we will proceed by induction. Assume for some d → 1 > 1 that eq. (12) holds, this hypothesis is
written below,

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


(13)

d→1

k=1


1

ωk→1,v(t) ⇑ ωa(t) < ωk,v(t) ≃ ωaobs(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωa(t)]



+ 1

ωk→1,v(t) ⇑ ωaobs(t) < ωk,v(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]



+ 1

T → t < ωd→1,v(t) ≃ ωaobs(t) ≃ ωa(t)


EP [Y |Ht ↘ H̃

\aobs

(t,T ] ]
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+ 1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,t+ωd↑1,v(t)]


.

Using the notation td→1 = t + ωd→1,v(t) for shorthand, we may rewrite the last summand as

E
H̃↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃td↑1

↑P̃ (·|Ht)



E
H̃(td↑1,T ]↑P̃ (·|H̃td↑1

)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


.

The first equality above used the law of total probability, while the second holds since the event
1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


and expectation EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


only depend on

events up to time td→1. Next we expand the latter term, EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


according to lemma 1

and plug-in to the equation above.

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


·

E
↓

H↑P̃

(
·

Ht≃H̃
\aobs
(t,td↑1]

)


1

ωa

↓

H

(td→1) < ωv
↓

H

(td→1) ≃ ωaobs
↓

H

(td→1)

·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωa

↓

H

(td→1), a)
 

+

1

ωaobs

↓

H

(td→1) < ωa
↓

H

(td→1) ≃ ωv
↓

H

(td→1)

·

EP


Y |Ht+ω

aobs
↓

H

(td↑1)
= Ht ↘ H̃

\aobs

(t,td↑1]


+


1

ωaobs

↓

H

(td→1) ≃ ωa
↓

H

(td→1) ≃ ωv
↓

H

(td→1) > T → td→1


·

EP


Y |HT = Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωv

↓

H

(td→1) < ωa
↓

H

(td→1) ≃ ωaobs
↓

H

(td→1)

·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωv

↓

H

(td→1), v)
 

Next we pull out the expectation over
↓

H, and then use the law of total probability to turn this into
a single expectation over a trajectory H̃ drawn from P̃ (·|Ht). Each occurrence of

↓

H will then be
changed to H̃ accordingly.

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃td↑1

↑P̃ (·|Ht)
E

↓

H↑P̃

(
·

Ht≃H̃
\aobs
(t,td↑1]

)


1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


·


1

ωa

↓

H

(td→1) < ωv
↓

H

(td→1) ≃ ωaobs
↓

H

(td→1)

·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωa

↓

H

(td→1), a)
 

+
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1

ωaobs

↓

H

(td→1) < ωa
↓

H

(td→1) ≃ ωv
↓

H

(td→1)

·

EP


Y |Ht+ω

aobs
↓

H

(td↑1)
= Ht ↘ H̃

\aobs

(t,td↑1]


+


1

ωaobs

↓

H

(td→1) ≃ ωa
↓

H

(td→1) ≃ ωv
↓

H

(td→1) > T → td→1


·

EP


Y |HT = Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωv

↓

H

(td→1) < ωa
↓

H

(td→1) ≃ ωaobs
↓

H

(td→1)

·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωv

↓

H

(td→1), v)
 

=

E
H̃↑P̃ (·|Ht)


1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


·


1

ωa
H̃

(td→1) < ωv
H̃

(td→1) ≃ ωaobs

H̃
(td→1)


·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωa

H̃
(td→1), a)

 
+


1

ωaobs

H̃
(td→1) < ωa

H̃
(td→1) ≃ ωv

H̃
(td→1)


·

EP


Y |Ht+ω

aobs
H̃

(td↑1)
= Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωaobs

H̃
(td→1) ≃ ωa

H̃
(td→1) ≃ ωv

H̃
(td→1) > T → td→1


·

EP


Y |HT = Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωv
H̃

(td→1) < ωa
H̃

(td→1) ≃ ωaobs

H̃
(td→1)


·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωv

H̃
(td→1), v)

 
(14)

Let us simplify the multiples of all the indicators that appear in eq. (14), while dropping the H̃

subscripts since they are clear from context.

1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


· 1


ωa
H̃

(td→1) < ωaobs

H̃
(td→1) ≃ ωv

H̃
(td→1)


=

1

ωd→1,v(t) ⇑ ωa(t) < ωd,v(t) ≃ ωaobs(t) ≃ T → t


,

1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


· 1


ωaobs

H̃
(td→1) < ωa

H̃
(td→1) ≃ ωv

H̃
(td→1)


=

1

ωd→1,v(t) ⇑ ωaobs(t) < ωd,v(t) ≃ ωa(t) ≃ T → t


,

1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


· 1


ωaobs

H̃
(td→1) ≃ ωa

H̃
(td→1) ≃ ωv

H̃
(td→1) > T → td→1


=

1

ωd,v(t) ≃ ωaobs(t) ≃ ωa(t) > T → t


,

1

ωd→1,v

H̃
(t) ⇑ ωaobs

H̃
(t) ≃ ωa

H̃
(t) ≃ T → t


· 1


ωv
H̃

(td→1) < ωa
H̃

(td→1) ≃ ωaobs

H̃
(td→1)


=

1

ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t


. (15)

Switching these equalities from 15 into eq. (14), we get

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωa(t) < ωd,v(t) ≃ ωaobs(t) ≃ T → t


·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωa

H̃
(td→1), a)

 
+
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1

ωd→1,v(t) ⇑ ωaobs(t) < ωd,v(t) ≃ ωa(t) ≃ T → t


·

EP


Y |Ht+ω

aobs
H̃

(td↑1)
= Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωd,v(t) ≃ ωaobs(t) ≃ ωa(t) > T → t


·

EP


Y |HT = Ht ↘ H̃

\aobs

(t,td↑1]

 
+


1

ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t


·

EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]
↘ (td→1 + ωv

H̃
(td→1), v)

 
.

Then it is easy to deduce that the conditioning sets can be simplified as follows,

E
H̃td↑1

↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωaobs(t) ≃ ωa(t) ≃ T → t


EP


Y |Ht ↘ H̃

\aobs

(t,td↑1]


=

E
H̃↑P̃ (·|Ht)


1

ωd→1,v(t) ⇑ ωa(t) < ωd,v(t) ≃ ωaobs(t) ≃ T → t


·

EP


Y |Ht ↘ H̃

\aobs

(t,ωa(t)]

 
+


1

ωd→1,v(t) ⇑ ωaobs(t) < ωd,v(t) ≃ ωa(t) ≃ T → t


·

EP


Y |Ht ↘ H̃

\aobs

(t,t+ωaobs (t)]

 
+


1

ωd,v(t) ≃ ωaobs(t) ≃ ωa(t) > T → t


·

EP


Y |HT = Ht ↘ H̃

\aobs

(t,T ]

 
+


1

ωd,v(t) < ωaobs(t) ≃ ωa(t) ≃ T → t


·

EP


Y |Ht ↘ H̃

\aobs

(t,t+ωd,v(t)]

 
.

Plugging this back into eq. (13) and using the linearity of expectation gives us exactly the equality in
eq. (12) and concludes the proof.

B.3 DISCRETE TIME VERSION

For the discrete-time version we keep a similar notation, but take time increments of 1 and call the
target policy ↼, which takes a history of the process and outputs a distribution over possible treat-
ments. The trajectory H now simplifies to the form {(x1,y1,a1), (x2,y2,a2), . . . , (xT ,yT ,aT )}
and similarly for the history Ht. The analogous claim to theorem 1 for these decision processes
follows from the lemma we prove below by setting d = T → t.
Lemma 3. For any H, t ↗ [0, T ) and 1 ⇑ d ⇑ T → t such that Ht is measurable w.r.t P we have
that

EP [Y |Ht] =E
H̃↑P̃ (·|Ht)



d

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1aobs,t+k↑i=at+k↑iEP [Y |Ht+k = Ht ↘ H̃
\aobs

[t+1,t+k]]


+
d

k=1

1at+k=aobs,t+kEP [Y |Ht+d = Ht ↘ H̃
\aobs

[t+1,t+d]]


. (16)

Note that for k = 1, we define
∏k→1

i=1 1at+k↑i=aobs,t+k↑i = 1.
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Proof. Throughout the proof we will use conditioning on H̃t+k (where 0 ⇑ k ⇑ d) as a shorthand
for conditioning on Ht+k = Ht ↘ H̃

\aobs

[t+1,t+k], as the meaning is clear from context. We will prove
the claim by induction on d. The base case for d = 1 follows simply from observing that the value
drawn for aobs,t+1 does not change the items inside the expectation E

H̃↑P̃ (·|Ht)
[. . .]. Let us write

this down in detail.

E
H̃↑P̃ (·|Ht)


1at+1 ⇐=aobs,t+1EP [Y |H̃t+1] + 1at+1=aobs,t+1EP [Y |H̃t+1]


=

E
H̃↑P̃ (·|Ht)


EP [Y |H̃t+1]


=

E
H̃t+1↑Pobs(·|Ht)


EP [Y |H̃t+1]


=

Ext+1,yt+1↑Pobs(·|Ht),at+1↑ε(·|Ht,xt+1,yt+1)



Eaobs,t+1↑εobs(·|Ht,xt+1,yt+1)


EP [Y |H̃t+1]


=

Ext+1,yt+1↑Pobs(·|Ht),at+1↑ε(·|Ht,xt+1,yt+1)


EP [Y |H̃t+1]


=

Ext+1,yt+1↑P (·|Ht),at+1↑ε(·|Ht,xt+1,yt+1)


EP [Y |H̃t+1]


=

EP [Y |Ht]. (17)

The first equality, as we argued earlier is due to the conditioning set H̃t+1 not depending on aobs,t+1

(as we defined earlier, it refers to Ht ↘H̃
\aobs

[t+1,t+1]). Intuitively, this is true because we only expand the
expectation one step forward in time. In the identity we wish to prove, eq. (16), the aobs treatments
do change the item within E

H̃↑P̃ (·|Ht)
[. . .] since they determine the earliest disagreement time. The

second equality is obtained by marginalizing over the sampled trajectories after time t+1, as they are
also not included in H̃t+1. Then the third equality writes the sampling of yt+1,xt+1, at+1, aobs,t+1

explicitly, and the fourth marginalizes over aobs,t+1 as we already mentioned it does not appear in
the expectation. Then we use the equality P (Xt+1, Yt+1|Ht) = Pobs(Xt+1, Yt+1|Ht), to write the
expectation as sampling xt+1,yt+1, at+1 from P . Finally, we use the tower property of conditional
expectation and arrive at the desired expression. Next, assume that the claim holds for some d → 1.
We write down the induction hypothesis and then marginalize over all the event after time t + d → 1
in H̃, as they do not appear in the arguments of the expectation.

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


d→1

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d→1

k=1

1at+k=aobs,t+k · EP [Y |H̃t+d→1]



= E
H̃t+d↑1↑P̃ (·|Ht)


d→1

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d→1

k=1

1at+k=aobs,t+k · EP [Y |H̃t+d→1]


. (18)

As in the base case, we can expand the expectation E[Y |H̃t+d→1] one time step forward,

EP [Y |H̃t+d→1] = E
H̃t+d↑P̃ (·|H̃t+d↑1)


EP


Y |H̃t+d


· 1at+d ⇐=aobs,t+d (19)
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+EP


Y |H̃t+d


· 1at+d=aobs,t+d


.

Now plug this in eq. (18) to obtain

EP [Y |Ht] = E
H̃t+d↑1↑P̃ (·|Ht)


d→1

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d→1

k=1

1at+k=aobs,t+k ·


E
H̃t+d↑P̃ (·|H̃t+d↑1)


EP


Y |H̃t+d


· 1at+d ⇐=aobs,t+d

+EP


Y |H̃t+d


· 1at+d=aobs,t+d



= E
H̃t+d↑1↑P̃ (·|Ht)


E
H̃t+d↑P̃ (·|H̃t+d↑1)



d→1

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d→1

k=1

1at+k=aobs,t+k ·


EP


Y |H̃t+d


· 1at+d ⇐=aobs,t+d

+EP


Y |H̃t+d


· 1at+d=aobs,t+d



= E
H̃t+d↑P̃ (·|Ht)


d→1

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d→1

k=1

1at+k=aobs,t+k ·


EP


Y |H̃t+d


· 1at+d ⇐=aobs,t+d

+EP


Y |H̃t+d


· 1at+d=aobs,t+d



= E
H̃t+d↑P̃ (·|Ht)


d

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d

k=1

1at+k=aobs,t+k · EP


Y |H̃t+d



= E
H̃↑P̃ (·|Ht)


d

k=1


1at+k ⇐=aobs,t+k

k→1

i=1

1at+k↑i=aobs,t+k↑i · EP [Y |H̃t+k]



+
d

k=1

1at+k=aobs,t+k · EP


Y |H̃t+d



The equality between the first and last item is exactly the expression we wish to prove. The first tran-
sition plugs eq. (19) into eq. (18), the second pushes the expectation over xt+d,yt+d, at+d, aobs,t+d

outside, the third uses the law of total expectation. Then we rearrange
d→1

k=1

1at+k=aobs,t+k ·


EP


Y |H̃t+d


· 1at+d ⇐=aobs,t+d + EP


Y |H̃t+d


· 1at+d=aobs,t+d



=


1at+d ⇐=aobs,t+d ·

d→1

k=1

1at+k=aobs,t+k · EP


Y |H̃t+d


+


d

k=1

1at+k=aobs,t+k · EP


Y |H̃t+d


,

and push the first item into the summation over k.
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To obtain the identity with the earliest disagreement time, set d = T → t in the statement we proved,
and note that for any value of H̃ in the expectation above, exactly one of the following items equals 1,

1at+k ⇐=aobs,t+k ·

k→1

i=1

1at+k↑i=aobs,t+k↑i for k ↗ [T → t], and
d

k=1

1at+k=aobs,t+k ,

and the value of k for which the above item equals 1 is k = ω
H̃

(t) (and T when∏d
k=1 1at+k=aobs,t+k = 1), hence t + ω

H̃
(t) is the earliest disagreement time, and eq. (16) reduces to

eq. (2) as claimed.

C ADDITIONAL DISCUSSION ON RELATED WORK

As outlined in section 4, several techniques have been proposed for scalable estimation of causal
effects in sequential decision-making, with more limited development in the case of irregular ob-
servation times. One set of approaches (Bica et al., 2020; Lim, 2018; Melnychuk et al., 2022), that
only apply to discrete time processes and static policies, can be roughly characterized as follows. A
prediction model f(Ht, Ha

T ; ω) for the outcome Y is learned, where Ht is the observed history of
events and H

a
T is the set of future treatments we would like to reason about. That is, in our notation

we would like f(Ht, Ha
T ; ω) to estimate EPH

a
T

[Y |Ht], where PH
a
T

assigns the treatments in H
a
T w.p.

1. In potential outcomes notation, this corresponds to E [Y a
|Ht], where Y a is a random variable

that outputs the outcome under a set of static future treatments a. All methods involve learning a
representation of history Zt = ↽(Ht; ⇀), and combine two important elements for achieving correct
estimates.

1. To yield correct causal estimates under an observational distribution that is not sequentially
randomized, methods either estimate products of propensity weights (Lim, 2018), or add a loss to
make Zt non-predictive of the treatment At, ↽ is then called a balancing representation.

2. To facilitate prediction of Y under a set of future treatments in the interval (t, T ], either ↽ is taken
as a sequence model, or a separate “decoder" network is learned (Bica et al., 2020; Lim, 2018).
A sequence model is trained with inputs where H

x,y
i,T \ H

x,y
i,t , i.e. the covariates in a projection

interval (t, T ] are masked, while the decoder takes Zt and H
a
T as inputs. Both are trained to

predict the outcome Y and serve as an estimator for EPobs [Y |Zt, Ha
T ], which recovers the correct

causal effect under sequential exchangeability. Notice that these techniques preclude estimation
with dynamic treatments, i.e. policies.

For irregular sampling, Seedat et al. (2022) follow the same recipe but choose a neural CDE archi-
tecture. This interpolates the latent path Zt in intervals between jump times of the processes, and is
shown empirically to be more suitable when working with data that is subsampled from a complete
trajectory of features in continuous time. The solution is not equipped to estimate interventions on
continuous treatment times (in our notation, εa). As mentioned earlier, Vanderschueren et al. (2023)
handle informative sampling times with inverse weighting based on the intensity ε. However, this is
a different problem setting from ours, as they do not seek to intervene on sampling times but wish to
solve a case where outcomes, features and treatments always jump simultaneously. In our setting,
intervening on εa with such simultaneous jumps would result in εx,y

obs ↔= εx,y , which is not the focus
of our work. Finally, we also note the required assumption for causal validity that is claimed in these
works is roughly Pobs(At = at|HT ) = Pobs(At = at|Ht). The assumption is unreasonable since
HT includes future factual outcomes that depend on the taken action, instead of the more standard
exchangeability assumption that posits independence of potential outcomes.

The G-estimation solution of (Li et al., 2021) for discrete time decision processes fits models for
both ↼obs(A(t)|Ht→1, X(t)), and Pobs(X(t), Y (t)|Ht→1). Then at inference time, they replace ↼obs

with the desired policy ↼ and estimate trajectories or conditional expectations of Y with monte-
carlo simulations. A straightforward generalization of this approach to decision point processes
can be devised by fitting the intensities εobs and replacing εa for inference. While we believe
that this is an interesting direction for future work, we do not pursue it further in our experiments,
since developing architectures and methods for learning generative models under irregular sampling
deserves a dedicated and in-depth exploration.
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D ADDITIONAL DISCUSSION ON IDENTIFIABILITY

To make the discussion on identifiability from section 2.2 more concise, we refer here to terms
and results from Røysland et al. (2022), and explain how they apply to our setting. Then we prove
corollary 1

D.1 CAUSAL IDENTIFICATION TERMINOLOGY

Filtrations and restrictions. In our notation, we condition on past events Ht, while in most formal
treatments of stochastic processes conditioning is performed on a filtration Ft of a ς-algbera F . F is
the full set of information generated by the processes N = [Na, Nx, Ny, Nu]. The notation F

v is
used for the ς-algebra generated by the process Nv alone, hence to a reduced set of information with
regards to F . Note that here we use the index v instead of e which we used in the main paper. This is
to avoid confusion with the notation for edges in a graph G. In the notation of Røysland et al. (2022),
there are also corresponding filtrations F

v
t of F

v . Finally the restriction P |Fv is used to denote the
restriction of probability measure P to the sub ς-algebra F

v. Intuitively, P |Fx,a,y is the measure
that ignores all the information generated by the unobserved processes Nu by marginalizing them.
Outside this section, appendix D, the notation P is used to refer directly to P |Fx,a,y as we work
under the ignorability assumption, which means inference under the restricted probability distribution
yields valid causal effects. In the rest of this section we explain why this validity holds, hence P
refers to the full process with the unobserved information included.

Following the above discussion on filtrations, expressions such as εv(t|Ht) should be read as
conditioning on a subset of the sample space where the events in the time interval [0, t) coincide with
Ht.

Interventions and causal validity. Under the assumption on independent increments, item 2 in
Assumption 1, we have that densities for a trajectory H take on the form:

Pobs(H) = exp


→

 T

0
εobs,•(t|Ht)dt




z↓{a,x,y},tz,i↓Hz

εz
obs(tz,i|Htz,i).

Interventions on Na then mean we replace the intensity εa
obs (which may depend on H

u) with an
intensity εa that only depends on H

x,a,y (formally, this means it is F
x,a,y predictable). The densities

change accordingly

The question of causal validity is then whether calculating statistics under P , e.g. EP [Y |H
a,x,y
t ],

results in the same estimation as calculating them under P |Fa,x,y . The difference being that P |Fa,x,y

intervenes on Pobs|Fa,x,y instead of on Pobs.8 The condition of eliminability, along with overlap,
ensures that this validity holds.

Eliminability, local independence, and the assumed graph. We will local independence graph G
is a directed graph where each node We now recall the definition of eliminability and the result we
use from Røysland et al. (2022).

P |Fx,y,a is the distribution that performs the intervention on Pobs and then restricts information to
the observable information, which admits the causal effect we wish to estimate. We then denote
P̃ as the distribution obtained by the same intervention on Pobs|Fx,y,a (i.e. where we marginalize
over U before the intervention). We rephrase the theorem of Røysland et al. (2022) to make it more
compatible and specialized to our notation and case, it is strongly advised to review the results in
their paper for a full formal treatment.
Theorem 1 (special case of Røysland et al. (2022)). Let P (G) be a local independence model and
the nodes be partitioned as in definition 3. Consider Pobs ↗ P(G) and a distribution P obtained
by an intervention on the process Na in Pobs, replacing its F-intensity εa

obs by a F
x,y-intensity ε.

Further consider P̃ that is obtained by performing the intervention on Pobs|Fx,a,y .

If G satisfies eliminability, then the intensities ε of P |Fa,x,y coincide with the intensities of P̃ .
8Røysland et al. (2022) also mention the assumption that P itself is causally valid, i.e. that calculating

effects under the distribution with the unobserved variables indeed yields valid causal effects. Here we take this
assumption as a given.
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To finish this overview, we explain in detail why the graph we assume in this work satisfies elim-
inability, and hence under the additional assumption of overlap, i.e. Assumption 2, we conclude the
correctness of our estimation technique.
Definition 5. A trail from v0 to vm in G = (V, E) is a unique set vertices {v0, . . . , vm} ↙ V
and edges {e1, . . . , em} ↙ E such that either ej = vj→1 ⇓ vj or ej = vj→1 ∝ vj for every
j = 1, . . . , m.

The trail is blocked by C ↙ V if either (i) V contains a vertex on the trail that is not a collieder (i.e.
there is no j such that both ej = vj→1 ⇓ vj and ej+1 = vj ∝ vj), or (ii) vj is a collider for some
j ↗ [m], while vj /↗ C and v /↗ C for any v which is a descendant of v.

The trail is allowed if em = vm→1 ⇓ vm. We say that A ↙ V is ω separated from u by C if for any
a ↗ A, {u} ↘ C blocks all allowed trails from a to u.

Didelez (2008) gives results that tie ω-separation to local independence, namely that under some
regularity conditions if A is ω-separated from v by C, then v is locally independent of A given C ↘ v.
Local independence in turn is a condition on the intensities of the process, namely that the F

{v}≃C≃A

intensity of Nv is indistinguishable from its F
{v}≃C-intensity. Intuitively, the F

{v}≃C-intensity is
the intensity that does not include information from the past of NA. Formally, it may be obtained
using the innovation theorem (Andersen et al., 2012, II.4.2). Then to show that the graph we assumed
in our derivation satisfies eliminability and conclude our claims, we will explain why the appropriate
ω-separation properties hold.
Claim 1. The graph G in fig. 2 satisfies eliminability.

Proof. Consider U1, it is easy to verify that Na is locally independent of U1 given Nx, Ny (the
second option from definition 3). This is because Nx, Ny blocks all directed paths between U1 and
Na on the graph, and in paths where one of these nodes is a collider, the other is not. Next we consider
U2, and claim that (Ny, Nx) are locally independent of U2 given (Nx, Ny, Na), which means the
first bullet in definition 3 is satisfied. To see this local independence holds, consider any allowed path
in G from U2 to Nx or Ny . Since allowed trails must end with incoming edges to the last node, then
either Na must be a non-collider on such an allowed trail (e.g. in the trail U2 ⇓ Na

⇓ Nx), or
either Nx or Ny must be a non-collider (e.g. in the trail U2 ⇓ Na

∝ Ny
⇓ Nx). In both cases,

these non-colliders are in the conditioning set, and thus U2 is ω-separated from Nx, Ny by (Na).
The required local-independence follows from this.9

D.2 PROOF OF COROLLARY 1

Equipped with the proper definitions of identifiability, we can now conclude our discussion on EDQ.
Let us recall corollary 1.
Corollary 1. Under assumption 1, a Q-function satisfying eq. (3) yields the causal effect of the
intervention that replaces (εa

obs, ↼obs) with (εa, ↼).

Following our discussion on identifiability, we see that assumption 1 guarantees that calculating
conditional expectations w.r.t a distribution where we replace εa

obs by εa in Pobs|Fx,a,y , yields a
correct causal effect. For the rest of this section we will call the resulting distribution P . This is a
slight abuse of notation, since P was used to refer to the interventional distribution under on Pobs,
but we use it here to avoid clutter.

To finish the proof of this corollary, we need to show that any Q-function that satisfies the self-
consistency equation in eq. (3) (which is what algorithm 2 seeks to produce) must also satisfy
Q(Ht) = EP [Y>t|Ht] for every measurable Ht. We first derive the self-consistency condition from
eq. (2). Then we show that the only function that satisfies this condition is the conditional expectation
we wish to estimate, EP [Y>t|Ht]. Equation (2) is rewritten below,

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


EP


Y

 Ht+ω
H̃

(t) = Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]


.

9the condition also includes the independence of U>2, but in our case U>2 = →.
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We write Y =


k Yk as the sum of rewards that have been observed in the trajectory and a random
variable that is the sum of future rewards.

EP [Y |Ht] = E
H̃↑P̃ (·|Ht)


EP


Y>t+ω

H̃
(t) +



(tk,yk)↓H
y
t+ω

H̃
(t)

yk

 Ht+ω
H̃

(t) = Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]



Then we subtract the rewards until time t,


(tk,yk)↓H
y
t
yk from both sides of the equation.

EP [Y |Ht] →



(tk,yk)↓H
y
t

yk = E
H̃|Ht

 

(tk,yk)↓H̃
y :

tk↓(t,t+ω
H̃

(t)]

yk + EP


Y>t+ω

H̃
(t)

Ht+ω
H̃

(t) = Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]



This is exactly eq. (3), which we can simplify slightly to

EP [Y>t|Ht] = E
H̃|Ht

 

(tk,yk)↓H̃
y :

tk↓(t,t+ω
H̃

(t)]

yk + EP


Y>t+ω

H̃
(t)

Ht+ω
H̃

(t) = Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]



Next we show that if there is a unique function Q(·) that satisfies both: (1) Q(HT ) = EP [Y |HT ],
i.e. the estimator returns the correct outcome when it is given a full trajectory (notice the outcome is
deterministic in this case), and (2) Q(·) satisfies the recursion in the above equation, namely

Q(Ht) = E
H̃|Ht

 

(tk,yk)↓H̃
y :

tk↓(t,t+ω
H̃

(t)]

yk + Q(Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]
)

. (20)

Due to this uniqueness, we will gather that Q(Ht) must coincide with EP [Y>t|Ht] for all measurable
Ht and conclude the proof.

Lemma 4. Assume Q1, Q2 are functions that satisfy both eq. (20) and Q1(H̃T ) = Q2(H̃T ) =
E[Y |H̃T ] for all HT . Then Q1(Ht) = Q2(Ht) for all measurable Ht.

Proof. Since both Q1, Q2 satisfy eq. (20), it holds that

Q1(Ht) → Q2(Ht) = E
H̃|Ht

[Q1(Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]
) → Q2(Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]
)]

Applying eq. (20) repeatedly to Q1(Ht ↘ H̃
\aobs

(t,t+ω
H̃

(t)]
) → Q2(Ht ↘ H̃

\aobs

(t,t+ω
H̃

(t)]
) and so on, for say

d times, we get that

Q1(Ht) → Q2(Ht) =E
H̃|Ht

[E
H̃|Ht+ω

H̃
(t)=Ht≃H̃

\aobs

(t,t+ω
H̃

(t)]
[

E
H̃|Ht+ω

H̃
(t)+ω

H̃
(t+ω

H̃
(t))=Ht≃H̃

\aobs

(t,t+ω
H̃

(t)]
≃H̃

\aobs

(t+ω
H̃

(t),t+ω
H̃

(t)+ω
H̃

(t+ω
H̃

(t))]
[. . .

Q1(Ht ↘ H̃
\aobs(

t,t+ωd
H̃

(t)
]) → Q2(Ht ↘ H̃

\aobs(
t,t+ωd

H̃
(t)

])]]],

where we denote the d-th disagreement under the nested sampling above by ωd
H̃

(t). Notice that again
there is slight abuse of notation here, since we reused the notation H̃ in the expectations above, where
the different H̃ appearing above may not be identical trajectories. It holds that limd↗↘ ωd

H̃
(t) = T

with probability 1, since the number of events in a trajectory is finite with probability 1. Hence we have
limd↗↘ Q1(Ht ↘ H̃

\aobs(
t,t+ωd

H̃
(t)

]) → Q1(Ht ↘ H̃
\aobs(

t,t+ωd
H̃

(t)
]) = Q1(Ht↘H̃

\aobs

(t,T ] )→Q1(Ht↘H̃
\aobs

(t,T ] ),

and may conclude that because Q1(H̃T ) = Q2(H̃T ) = E[Y |H̃T ] for full trajectories H̃T , the
functions Q1(·) and Q2(·) must coincide,

Q1(Ht) → Q2(Ht) =E
H̃|Ht

[Q1(Ht ↘ H̃
\aobs

(t,T ] ) → Q2(Ht ↘ H̃
\aobs

(t,T ] )] = 0.
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