
Published as a conference paper at ICLR 2025

Appendix

A PROOF OF THEOREM 4.1

We first reformulate Problem (5) as there are two variables Ŵ and M, leading to difficulties for
optimization. For each linear layer, we try to minimize the difference of the linear outputs (measured
by ω2 norm) before and after pruning, i.e., →(W+εW)X↑WX→22 = →εWX→22. A mask M denotes
the pruned locations, i.e., the values indexed (qi, pi1), (qi, pi2), ..., (qi, piki), ↓i ↔ {1, . . . , k} in
M are all zeros. (qi, pij) denotes the pruned weight index in the qthi row and pthij column. The
pruned weights are distributed in k rows and there are ki pruned elements in the ith row with pruned
elements. To make the problem tractable, the pruned weights (qi, pij) are set to zero, i.e. [W +
εW]qi,pij = 0. To minimize the loss incurred by pruning, the other unpruned weights are optimized
for minimal loss. Problem (5) can be reformulated as following,

min
ωW

L(εW) = →εWX→2,

s.t. eTqiεWepi1 + [W]qi,pi1 = 0,

eTqiεWepi2 + [W]qi,pi2 = 0,

......

eTqiεWepiki
+ [W]qi,piki

= 0,

↓i ↔ {1, . . . , k}, (15)

where eqi is a one-hot vector with the qthi element as 1 and all others as 0, and epij has similar
meanings. eTqiεWepij denotes the weight in the qthi row and the pthij column of εW. It is equivalent
to Problem (5).

It can be transformed to vector representation,
min
ωW

L(εW) = →εWX→2,

s.t. eTq1εWM1 +Wq1 = 0,

eTq2εWM2 +Wq2 = 0,

......

eTqkεWMk +Wqk = 0, (16)

where Mi ↔ Rm→ki with [M1]:,j = epij , and Wqi = [[W]qi,pi1 , [W]qi,pi2 , ..., [W]qi,piki
] ↔

R1→ki . Mi is a collection of all pruned column indexes in the qthi row, and Wqi is a collection of
all pruned weight values in the qthi row. Wqi can be further represented as eTqiWMi.

The Lagrange function for Problem (16) is
L (εW,ϑ) =→εWX→2 + (eTq1εWM1 +Wq1)ϑ1 + (eTq2εWM2 +Wq2)ϑ2

+ ...+ (eTqkεWMk +Wqk)ϑk,

=Tr(XT εWT εWX) +
∑

i

(eTqiεwMi +Wqi)ϑi, (17)

where ϑi ↔ Rki→1 denotes the Lagrange multiplier corresponding to the constraint for the qthi row
in Problem (16). ϑi = [ϑi1,ϑi2,,ϑiki] and each ϑij corresponds to the constraint eTqiεWepij +
[W]qi,pij = 0 in Problem (15). The trace function Tr(·) computes the ω2 norm of εWX.

The gradients with reference to εW should be 0.
εL (εW,ϑ)

ε(εW)
= 2εWXXT +

∑

i

eqiϑ
T
i M

T
i = 0. (18)

We can obtain εW as below,

εW = ↑
(
∑

i

eqiϑ
T
i M

T
i

)
(2XXT)↑1. (19)

16

Published as a conference paper at ICLR 2025

By applying Equation (19) in Equation (17), we have the following,

g(ϑ) =Tr

(
XT (2XXT)↑1

(
∑

i

Miϑie
T
qi

)(
∑

i

eqiϑ
T
i M

T
i

)
(2XXT)↑1X

)

↑
∑

i

eTqi

(
∑

i

eqiϑ
T
i M

T
i

)
(2XXT)↑1Miϑi +

∑

i

Wqiϑi

=Tr

(
XT (2XXT)↑1

(
∑

i

Miϑiϑ
T
i M

T
i

)
(2XXT)↑1X

)

↑
∑

i

ϑT
i M

T
i (2XXT)↑1Miϑi +

∑

i

Wqiϑi

=↑ 1

2

∑

i

ϑT
i M

T
i (2XXT)↑1Miϑi +

∑

i

Wqiϑi (20)

Note that eTqieqi = 1 and eTqieqj = 0, if i ↗= js. Besides, we can switch the position of
XT (2XXT)↑1Miϑi and ϑT

i M
T
i (2XXT)↑1X in the trace function.

The gradients with reference to ϑ should be 0.

εg(ϑ)

εϑi
= ↑MT

i (2XXT)↑1Miϑi +WT
qi = 0, ↓i. (21)

We can obtain the optimal ϑ as below,

ϑ↓
i = [MT

i (2XXT)↑1Mi]
↑1WT

qi , ↓i. (22)

The optimal εW can be derived as below,

εW↓ = ↑
(
∑

i

eqiWqi [M
T
i (2XXT)↑1Mi]

↑1MT
i

)
↘ (2XXT)↑1

= ↑
(
∑

i

eqie
T
qiWMi[M

T
i (2XXT)↑1Mi]

↑1MT
i

)
↘ (2XXT)↑1. (23)

The minimal loss/error corresponding to the optimal εW can be obtained by

L↓ =
1

2

∑

i

ϑT
i M

T
i (2XXT)↑1Miϑi

=
1

2

∑

i

Wqi [M
T
i (2XXT)↑1Mi]

↑1WT
qi

=
1

2

∑

i

eTqiWMi[M
T
i (2XXT)↑1Mi]

↑1MT
i W

T eqi

=
1

2

∑

i

[WMi[M
T
i (2XXT)↑1Mi]

↑1MT
i W

T]qi,qi . (24)

B COMPILER OPTIMIZATIONS

This section further details our compiler optimizations, including operator fusion and tensor en-
hancements. Next, we describe our formalized algorithm for eliminating layout transformations.

B.1 GENERAL OPTIMIZATIONS

Operator Fusion The Mamba model comprises a series of diverse operators, such as Conv and
MatMul. This results in frequent data movement between operators, presenting significant chal-
lenges for memory throughput demands. With more than 100 different types of operators, existing

17

Published as a conference paper at ICLR 2025

frameworks like TFLite, Pytorch-Mobile, and llama.cpp rely on a fixed pattern matching strategy
to identify and fuse operator combinations. However, this approach fails to recognize new operator
combinations due to the vast potential combination space among the operators. To address this issue,
we have developed an advanced operator fusion strategy. First, we categorize operators into groups
based on their input-output mapping relationships—One-to-One, One-to-Many, Many-to-Many—to
assess the feasibility of fusion. Next, our loop fusion framework operates at a high-level operator
abstraction with only three categories. This simplification significantly broadens fusion possibilities
by making it easier to classify individual operators and their combinations. Compared to traditional
operator fusion supported by frameworks like llama.cpp,TFLite,and Pytorch-Mobile our method
offers greater flexibility and more opportunities for aggressive optimization.

Tensor Optimizations We also incorporate a suite of tensor optimizations such as memory plan-
ning, constant folding, and shape inference into our framework, similar to those found in other
frameworks. What sets our tensor optimizations apart is the introduction of graph rewriting rules
that utilize mathematical properties to optimize Mamba computations. This approach not only low-
ers evaluation costs but also simplifies operator fusion.

B.2 ALGORITHM FOR LAYOUT TRANSFORMATION ELIMINATION

List 1 presents our algorithm for selecting and eliminating layouts. We determine the actions for each
edge (connecting a producer and a consumer) using a depth-first search, starting from the graph’s
inputs (Line 3 to Line 4). The action consists of eliminating (eliminate the layout transformation),
fusing, as well as searching an optimal data layout for an operator. After collecting the actions for all
edges, we focus on processing operator fusion and layout mapping. We extend the fusion algorithm
in Section B.1 while employing different strategies when one edge has multiple consumers (Line
36). When an operator can be fused with multiple predecessors, we fuse it with the operator that
has maximum intermediate results to minimize index computation overhead. If an output tensor
has multiple consumers and those consumers have less than 3 reduction dimensions (the dimension
performs reduction operation during the computation), we use a layout to align these dimensions
iteratively (Line 40 to Line 42). However, if there are more reduction dimensions, we maintain
several copies of data with different layouts, and each layout is in this optimized combined format
(Line 45 to Line 47).

1 ecg = build_ecg(cg) # Build graph with CD info
2 # analysis actions in ecg
3 for edge in ecg.in_edges:
4 depth_first_search(edge, ecg, True)
5 # process search/fuse/eliminate actions in ecg
6 for edge in ecg.in_edges:
7 depth_first_search(edge, ecg, False)
8

9 def depth_first_process(in_edge, ecg, analysis):
10 out_edges = in_edge.consumer.out_edges
11 # Recurse for its consumer’s output edges
12 for out_edge in out_edges:
13 if analysis:
14 determine_action(in_edge, out_edges, ecg)
15 else:
16 process_action(in_edge, out_edges, ecg)
17 depth_first_process(out_edge, ecg, analysis)
18

19 def determine_action(curr_edge, next_edge, ecg):
20 # Check consumer types of curr and next edges
21 t1, t2 = curr_edge.ctype, next_edge.ctype
22 if t1 == t2 == ’ILD&Var’:
23 curr_edge.search = True
24 next_edge.search = True
25 elif t1 == ’ILD&Var’ t2 == ’ILI&Var’:
26 curr_edge.search = True
27 next_edge.fuse = True
28 elif t1 == ’ILD&Var’ t2 == ’ILI&Fixed’:
29 curr_edge.search = True

18

Published as a conference paper at ICLR 2025

30 eliminate_edge(next_edge, ecg)
31 # Continue for other combinations ...
32

33 def process_action(curr_edge, next_edge, ecg):
34 if curr_edge.fuse or next_edge.fuse:
35 # Fuse edge with its optimal consumer
36 try_fuse(curr_edge, next_edge, ecg)
37 # Check all successor edges to select layouts
38 out_edges = curr_edge.consumer.out_edges
39 cds = get_reduction_dims(out_edges)
40 if len(unique(cds)) < 3:
41 next_edge = merge_edges(out_edges)
42 set_physical_layout(curr_edge, next_edge)
43 else:
44 # Select 2 edges to merge and remaining
45 merged, rem = select_edges(out_edges, cfg)
46 set_physical_layout(curr_edge, merged)
47 insert_implicit_convert(rem)
48

49 def set_physical_layout(curr_edge, out_edge):
50 # Map reduction dims to consecutive 2.5D memory

Listing 1: Algorithm for Layout Transformation Elimination

C LATENCY-ORIENTED SPARSE LEARNING

We provide the latency-oriented sparse learning results on the Mamba-2.8B model in Table A1. It is
observed that to achieve faster inference acceleration, the task performance of sparse models tends
to decrease compared to accuracy-oriented sparse learning.

D FULL RESULTS

We provide the full sparse results with sparsity ratios vary from 10% to 80% and additional 4:8
sparse patterns for SparseGPT and Wanda methods in Table A2. We can find that our method can
achieve the better performance with larger sparsity than SparseGPT and Wanda with 2:4 or 4:8
patterns in all scales of the Mamba models, which verifies the effectiveness of our sparse learning
framework.

E MEMORY AND ENERGY CONSUMPTION COMPARISON

F PORTABILITY EVALUATION

G COMPARE WITH TRANSFORMERS

We compare the 50% sparsity model generated by our method with various transformer-based mod-
els, as shown in Table A3. Our method consistently outperforms most other transformer-based
models across different scales. Especially, with 50% sparsity and 2.8B model size, our method can
achieve similar task performance as OPT-6.7B model, when enjoying the inference acceleration on
mobile devices.

H LLAMA RESULTS

We deliver the perplexity results of LLaMA family on WikiText2 with 50% sparsity compared to
the SparseGPT Frantar & Alistarh (2023) and Wanda Sun et al. (2023) in Table A4. Our method
achieves better performance than other two methods.

19

Published as a conference paper at ICLR 2025

I ABLATION FOR DAMPENING RATIO

We conducted an ablation study on the dampening ratio to evaluate its impact on model performance,
using Mamba-2.8B at 50% sparsity on LAMBDA dataset, as illustrated in Figure A1. The results
indicate that as the dampening ratio increases, the model performance progressively deteriorates.

4

5

6

7

8

9

10
Perplexity

Dampening Ratio
10−3 10−2 10−1 100

Figure A1: Ablation for the dampening ratio.

Table A1: Latency-oriented sparse learning results of Mamba-2.8B model.

Mamba Sparse Mobile CPU LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrade Avg.
Learning Token/s PPL ≃ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐

1.4B
Baseline 2.06 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7

↭ 3.64 7.01 58.63 37.36 66.64 52.35 22.38 57.22 49.10
↭ 4.31 39.67 34.23 29.56 61.59 40.53 17.92 53.43 39.54

2.8B
Baseline 1.85 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3

↭ 2.54 6.61 60.57 38.16 68.23 52.86 23.55 59.04 50.40
↭ 3.04 20.28 43.2 32.25 58.13 39.89 19.28 54.06 41.14

J PEAK MEMORY ON MOBILE

In Table A5, we present the peak memory usage of our framework on mobile devices. The Sparse
column indicates the peak memory consumption for our framework. The sparse weight storage
method maintains a consistent memory size regardless of the sparsity ratio. The sparse model re-
quires only a slight increase in memory compared to the dense model, ranging from 2.4% to 5.5%,
while delivering significantly faster inference. This demonstrates the efficiency and practicality of
our approach.

K ENERGY CONSUMPTION ON MOBILE

We present the energy consumption results of our framework with different model scales and sparsity
ratios on mobile devices in Table A6. Compared to the dense model, our sparse model demonstrates
a significant energy saving ratio, varying from 2.6% to 45.8%. The reduction in energy consump-
tion is primarily attributed to our hardware design, which optimizes the proposed framework to
significantly reduce computational demands. An important observation is that energy consumption
decreases as the sparsity increases, highlighting the efficiency of our method in leveraging sparsity
to minimize resource usage.

L BENCHMARK ON OTHER EDGE DEVICES

We also conducted latency evaluations on a low-end device, the Xiaomi 6, which is equipped with
a Snapdragon 835 featuring an octa-core CPU and an Adreno 540 GPU with 6GB of memory.

20

Published as a conference paper at ICLR 2025

The results are presented in Table A7. Due to the memory limitations, we report the results for
Mamba models with 130M, 370M, and 790M model scales. The results show similar trends: our
dense version achieves a speedup ranging from 3.3↘ to 4.4↘ compared to llama.cpp on the mobile
CPU. Meanwhile, compared to our dense version, our sparse method demonstrates considerable
acceleration, achieving approximately 1.1↘ to 1.2↘ speedup at 30% sparsity, 1.1↘ to 1.3↘ speedup
at 50% sparsity, and 1.2↘ to 1.8↘ speedup at 70% sparsity. These results demonstrate that our
proposed method is both compatible and efficient across different edge devices.

21

Published as a conference paper at ICLR 2025

Table A2: Full results for Mamba models with different scales.
Method Sparsity LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrade Avg.

Ratio PPL ≃ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐
Mamba-130M \ 16.07 44.3 35.3 64.5 48 24.3 51.9 44.71

SparseGPT 2:4 50% 69.80 26.08 29.76 58.81 37.54 22.70 52.41 37.88
SparseGPT 4:8 50% 43.96 31.24 30.83 59.74 39.52 22.35 51.30 39.16

Wanda 2:4 50% 212.91 15.35 29.38 56.80 38.72 21.08 52.49 35.64
Wanda 4:8 50% 90.46 22.61 30.65 58.00 39.69 22.70 52.33 37.66

Ours

10% 16.14 43.92 35.27 64.25 48.44 24.66 52.17 44.79
20% 16.35 43.74 35.03 64.69 47.98 24.57 51.07 44.51
30% 17.47 42.09 34.49 63.98 47.14 23.81 53.59 44.18
40% 20.28 40.00 34.04 63.06 45.71 24.23 50.12 42.86
50% 28.97 35.20 32.21 60.83 41.58 24.23 51.93 41.00
60% 41.69 31.23 31.56 59.89 38.68 23.45 50.56 44.16
70% 57.29 27.67 29.90 58.87 36.41 22.87 50.12 37.64

Mamba-370M \ 8.14 55.6 46.5 69.5 55.1 28 55.3 50.0

SparseGPT 2:4 50% 27.93 35.78 34.69 61.48 40.61 23.12 51.78 41.24
SparseGPT 4:8 50% 17.19 43.28 37.55 62.19 43.73 24.57 52.64 43.99

Wanda 2:4 50% 82.52 22.55 31.85 60.12 40.28 22.35 51.70 38.14
Wanda 4:8 50% 33.12 32.93 35.69 62.95 43.10 24.15 52.49 41.89

Ours

10% 8.13 55.73 46.49 69.53 54.59 27.90 55.88 51.69
20% 8.20 55.42 45.91 69.10 54.80 27.90 55.80 51.49
30% 8.55 54.57 44.88 68.82 52.69 27.47 55.33 50.63
40% 9.59 52.42 43.33 68.34 50.55 27.56 54.30 49.42
50% 12.33 47.88 40.21 64.69 47.64 26.54 54.30 46.88
60% 16.78 43.21 37.68 62.56 43.43 25.12 52.95 48.79
70% 22.09 38.91 35.22 61.37 40.53 23.72 51.62 41.90

Mamba-790M \ 6.02 62.7 55.1 72.1 61.2 29.5 56.1 57.1

SparseGPT 2:4 50% 13.69 46.24 40.07 63.98 44.95 24.74 55.33 45.89
SparseGPT 4:8 50% 9.88 51.10 43.94 66.49 47.94 24.49 55.09 48.18

Wanda 2:4 50% 43.76 28.45 36.88 62.79 43.27 22.61 55.25 41.54
Wanda 4:8 50% 19.73 39.90 41.81 65.34 47.98 24.57 53.99 45.60

Ours

10% 6.02 61.28 54.93 72.25 61.41 29.52 56.04 55.91
20% 6.10 61.42 54.67 71.71 60.14 28.92 55.96 55.47
30% 6.20 60.7 53.62 71.82 58.71 28.41 56.2 54.91
40% 6.68 59.25 51.79 70.62 56.31 28.16 56.59 53.79
50% 7.87 56.01 47.96 68.88 51.56 26.28 55.88 51.10
60% 9.45 52.63 43.25 66.78 48.52 25.89 55.67 48.79
70% 11.85 48.85 41.78 64.74 44.53 25.77 55.41 46.85

Mamba-1.4B \ 5.04 64.9 59.1 74.2 65.5 32.8 61.5 59.7

SparseGPT 2:4 50% 8.87 54.28 44.49 66.49 49.07 24.32 54.46 48.85
SparseGPT 4:8 50% 6.87 58.98 48.28 69.21 54.38 26.02 57.38 52.38

Wanda 2:4 50% 32.72 31.61 38.24 63.87 46.84 22.78 53.67 42.84
Wanda 4:8 50% 15.27 42.44 44.43 67.14 52.23 24.83 55.01 47.68

Ours

10% 5.04 64.99 59.03 74.05 65.15 32.68 60.62 59.42
20% 5.05 65.05 58.82 73.61 64.27 32.17 60.93 59.14
30% 5.08 65.05 58.24 73.23 64.02 32.42 60.69 58.94
40% 5.21 64.27 56.27 72.63 61.36 31.14 59.98 57.61
50% 5.65 62.45 52.74 70.73 58.59 29.01 58.96 55.41
60% 7.30 57.52 46.04 68.28 51.64 26.28 57.38 51.19
70% 17.40 43.22 31.65 62.51 43.35 19.54 55.09 42.56
75% 19.65 41.96 35.74 61.10 41.16 22.87 54.38 42.87

Mamba-2.8B \ 4.23 69.2 66.1 75.2 69.7 36.3 63.5 63.3

SparseGPT 2:4 50% 5.11 65.57 52.10 69.97 55.98 27.56 59.83 55.17
SparseGPT 4:8 50% 4.55 68.00 56.00 71.27 61.53 29.10 59.91 57.64

Wanda 2:4 50% 10.49 50.01 48.01 65.78 54.92 26.28 56.20 50.20
Wanda 4:8 50% 7.46 57.44 53.43 70.24 59.39 28.16 58.17 54.47

Ours

10% 4.22 69.11 66.02 75.24 69.82 36.52 63.38 63.35
20% 4.20 69.14 65.69 75.14 69.49 36.69 62.59 63.12
30% 4.18 69.42 65.17 75.57 69.23 36.43 62.59 63.07
40% 4.18 69.16 63.73 74.37 67.55 34.56 61.40 61.80
50% 4.26 68.91 60.17 72.58 65.24 31.48 61.09 59.91
60% 4.72 66.74 53.95 71.06 57.32 28.41 59.35 56.14
70% 7.51 58.82 43.25 64.64 46.63 25.17 58.25 49.46
75% 15.86 46.59 36.16 61.04 40.70 22.78 56.20 43.91
80% 67.94 28.60 30.19 57.07 34.64 20.99 50.43 36.99

22

Published as a conference paper at ICLR 2025

Table A3: Compare with transformer-based models with our 50% sparsity models.

Method LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrade Avg.
PPL ≃ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐ Acc ⇐

Hybrid H3-130M 89.48 25.8 31.7 64.2 44.4 24.2 50.6 40.1
Pythia-160M 38.10 33.0 30.2 61.4 43.2 24.1 51.9 40.6
Ours-130M 28.97 35.2 32.2 60.8 41.6 24.2 51.9 41.0

Hybrid H3-360M 12.58 48.0 41.5 68.1 51.4 24.7 54.1 48.0
Pythia-410M 10.84 51.4 40.6 66.9 52.1 24.6 53.8 48.2
Ours-370M 12.33 47.9 40.2 64.7 47.6 26.5 54.3 46.9

Pythia-1B 7.92 56.1 47.2 70.7 57.0 27.1 53.5 51.9
Ours-790M 7.87 56.0 48.0 68.9 51.6 26.3 55.9 51.1

GPT-Neo 1.3B 7.50 57.2 48.9 71.1 56.2 25.9 54.9 52.4
Hybrid H3-1.3B 11.25 49.6 52.6 71.3 59.2 28.1 56.9 53.0

OPT-1.3B 6.64 58.0 53.7 72.4 56.7 29.6 59.5 55.0
Pythia-14B 6.08 61.7 52.1 71.0 60.5 28.5 57.2 55.2

RWKV-1.5B 7.04 56.4 52.5 72.4 60.5 29.4 54.6 54.3
Ours-1.4B 5.65 62.5 52.7 70.7 58.6 29.0 59.0 55.4

GPT-Neo 2.7B 5.63 62.2 55.8 72.1 61.1 30.2 57.6 56.5
Hybrid H3-2.7B 7.92 55.7 59.7 73.3 65.6 32.3 61.4 58.0

OPT-2.7B 5.12 63.6 60.6 74.8 60.8 31.3 61.0 58.7
Pythia-2.8B 5.04 64.7 59.3 74.0 64.1 32.9 59.7 59.1
RWKV-3B 5.24 63.9 59.6 73.7 67.8 33.1 59.6 59.6
Ours-2.8B 4.26 68.9 60.2 72.6 65.2 31.5 61.1 59.9

GPT-J-6B 4.10 68.3 66.3 75.4 67.0 36.6 64.1 63.0
OPT-6.7B 4.25 67.7 67.2 76.3 65.6 34.9 65.5 62.9

Pythia-6.9B 4.45 67.1 64.0 75.2 67.2 35.5 61.3 61.7
RWKV-7.4B 4.38 67.2 65.5 76.1 67.8 37.5 61.0 62.5

Table A4: Perplexity results on WikiText2 for LLaMA model family with 50% sparsity.
Method LLaMA-1-7B LLaMA-1-13B LLaMA-1-30B LLaMA-2-7B LLaMA-2-13B

/ 5.68 5.09 4.77 5.12 4.57

Magnitude 42.13 18.37 9.10 54.59 8.33
SparseGPT 2:4 11.00 9.11 7.16 10.17 8.32

Wanda 2:4 11.53 9.58 6.90 11.02 8.27

Ours 8.53 7.92 5.95 7.87 6.45

Table A5: Peak memory consumption results for Mamba models with different scales. The last col-
umn shows the percentage increase in memory usage for sparse models compared to dense models.

Mamba Dense Sparse Increase (%)
130M 708 MB 725 MB 2.4
370M 1.64 GB 1.68 GB 2.4
790M 3.28 GB 3.39 GB 3.3
1.4B 5.22 GB 5.42 GB 3.8
2.8B 7.61 GB 8.03 GB 5.5

23

Published as a conference paper at ICLR 2025

Table A6: Energy consumption results for Mamba models with different model scales and sparsity
ratios. ESR denotes energy saving ratio over the dense baseline.

Mamba Sparsity Energy (mW) ESR

130M

0% 1204.74 -
30% 922.29 23.4%
50% 689.60 42.8%
70% 653.62 45.8%

370M

0% 1227.35 -
30% 1109.43 9.6%
50% 944.31 23.1%
70% 925.03 24.7%

790M

0% 2030.38 -
30% 1608.19 20.8%
50% 1218.30 40.0%
70% 1191.00 41.3%

1.4B

0% 2052.16 -
30% 1897.14 7.6%
50% 1843.56 10.2%
75% 1783.54 13.1%

2.8B

0% 2763.21 -
30% 2690.69 2.6%
50% 2420.10 12.4%
75% 2188.20 20.8%

Table A7: Latency results of Mamba with different model scales and 64 sequence length, tested on
a Xiaomi 6 device. SPD denotes the speedup over llama.cpp (red) and our dense baseline (blue).

Mamba Framework Sparsity Mobile CPU Mobile GPU
Token/s SPD Token/s SPD

130M

llama.cpp 0% 0.73 1.0↘ - -
ours 0% 2.90 4.0↘/1.0↘ 22.10 1.0↘
ours 30% 3.00 4.1↘/1.0↘ 25.41 1.2↘
ours 50% 3.20 4.4↘/1.1↘ 28.52 1.3↘
ours 70% 3.47 4.8↘/1.2↘ 30.90 1.4↘

370M

llama.cpp 0% 0.26 1.0↘ - -
ours 0% 1.15 4.4↘/1.0↘ 11.91 1.0↘
ours 30% 1.22 4.7↘/1.1↘ 12.50 1.1↘
ours 50% 1.48 5.7↘/1.3↘ 13.94 1.2↘
ours 70% 1.56 6.0↘/1.4↘ 15.79 1.3↘

790M

llama.cpp 0% 0.12 1.0↘ - -
ours 0% 0.40 3.3↘/1.0↘ 5.59 1.0↘
ours 30% 0.49 4.1↘/1.2↘ 6.08 1.1↘
ours 50% 0.63 5.3↘/1.6↘ 6.76 1.2↘
ours 70% 0.72 6.0↘/1.8↘ 8.73 1.6↘

24

	Introduction
	Related Work
	State Space Models
	DNN inference acceleration on mobile

	Motivation and Background
	Preliminary
	Methodology
	Sparse Kernel Design
	Effectiveness Loss
	Sparsity and Latency Loss
	Sparse Learning
	Compensation
	Hardware Implementation

	Experiments
	Experiment Setup
	Main Results
	Latency Results
	Ablation Study

	Conclusion
	Proof of Theorem 4.1
	Compiler Optimizations
	General Optimizations
	Algorithm for Layout Transformation Elimination

	Latency-Oriented Sparse Learning
	Full Results
	Memory and Energy Consumption Comparison
	Portability Evaluation
	Compare with Transformers
	LLaMA Results
	Ablation for Dampening Ratio
	Peak Memory on Mobile
	Energy Consumption on Mobile
	Benchmark on Other Edge Devices

