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1 RESULTS ON EACH AFFORDANCE CATEGORY

According to the Table 1, We found that our model achieved the highest mIoU in 12 categories.
However, in 3 categories, other models outperformed ours by approximately 7% in mIoU. The
largest difference was observed in the category slice, where other models exceeded our performance
by about 50%. Upon analysis, we believe that IAGNet and OpenAD-PN2 overfit to certain cate-
gories in zero-shot open-vocabulary affordance detection, leading to significant advantages in a few
specific categories. However, I believe our training strategy is still superior. Compared to OpenAD,
we achieve over a 10% lead in 13 categories, with 6 categories exceeding 30%. The largest margin
is approximately 40%.

Table 1: The open vocabulary mIoU evaluation results for each affordance category on full-view
setting. The best results of our methods are in bold, while best mIoU of other methods are marked
with ∗. We believe the results ∗ perform well due to the model overfitting to certain categories.

Category Ours IAGNet LASO OpenAD-PN2

push 0.3326 0.0440 0.2853 0.2440
drag 0.0387 0.0010 0.0451∗ 0
unlock 0.2543 0.0672 0.1565 0.0320
demonstrate 0.4381 0.1981 0.3619 0.0670
accommodate 0.1473 0.0289 0.0945 0.0010
grab 0.3031 0.3376∗ 0.0267 0.0350
hear 0.4282 0.1786 0.4482 0.4890∗
wrap 0.4759 0.3798 0.4553 0.2090
pour 0.4326 0.3597 0.4147 0.2160
slice 0.0296 0.0587 0.0379 0.5430∗
jab 0.4205 0.0012 0.2887 0
raise 0.0656 0.1473 0.0291 0
take a seat 0.6015 0.2558 0.2434 0.2960
bear 0.3437 0.0696 0.3590∗ 0
reposition 0.2272 0.4146∗ 0.0665 0
thumb 0.4121 0.0096 0.3942 0
rest 0.2850 0.2274 0.2164 0.1510
clothe 0.2421 0.1076 0.1095 0.1450

2 MORE QUALITATIVE RESULTS

Qualitative results on real-world partial-view point cloud

We collected some other partial-view point cloud in real world for affordance detection. The visual-
ization results are shown in 1.

Multi-affordance results

As illustrated in Figure 2, an object can possess multiple reasonable affordances. For instance,
the mug depicted in Figure 2 demonstrates four types of affordances: pourable, wrap, grab, and
accommodate (from left to right).
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Chair-Sittable Bag-Raise Display-Demonstrate Mug-Grab Bowl-Wrap TrashCan-Open

Figure 1: Qualitative results on real-world partial-view point cloud.

Pour Wrap Grab Accommodate

Figure 2: Different affordance types of an object

Additionally, a single part or region on an object may have multiple reasonable affordances. For
instance, we explored the different affordances of a bed, as shown in the Figure 3. We found that
there are some regions that support both sleeping, and also have attributes such as support, laying
down, and sittable.

Whers is the sleep areas ? If I want to place something 
on the bed,which areas can 
support that?

If I want to lay down on this 
object, please help me find the 
coorresponding areas.

Can you show me the sittable 
areas on this object.

Figure 3: Different affordance types with same regions on an object.

Fine-grained Results

A part of an object often carries specific affordance meanings; for example, the handle of a knife
can be used for grasping. Moreover, the region of the knife handle intended for grasping should not
be limited to a small area; therefore, our model tends to predict an entire part. Of course, our model
can also predict fine-grained regions,in Figure 4: the tip of a knife—jab, the tip of scissors—stab,
the rim of the mug-pour,door-open.

OOD visualization results.

As shown in Figure 5, our model demonstrates promising performance on the OOD data.

3 ADDITIONAL EXPERIMENTS

Effects of different pre-training datasets We conduct the experiment that the first stage is trained
on 3D AffordanceNet dataset. Compared to pre-training 3D AffordanceNet, our model benefits
from IROS pretraining, acquiring general segmentation knowledge and effectively transferring it to
affordance detection. As the table shows, our method achieves a 6.13% increase in mIoU, 9.24% in
Acc, and 13.76% in mAcc.

Detailed comparison with OpenAD

As described in Line 400–407 of our paper regarding the evaluation metrics, we have modified the
calculation methods for mIoU, Acc, and mAcc. Unlike OpenAD, which includes the background

2
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Figure 4: Fine-grained Results

Wrap-grasp Jax Lever Faucet Handle-grasp Pot Twist Faucet Lever Faucet Twist Faucet

Figure 5: Visualization of OOD.

Table 2: The efforts with different pre-training strategy in 3D-ADLLM.

Method mIoU Acc mAcc

Pretrain-3DAffordanceNet 24.30 20.12 34.02
3D-ADLLM 30.43 29.36 47.78

Table 3: Main results of 3D-ADLLM on zero-short open vocabulary detection. The result is calcu-
lated over all classes(∗: included ”none”).

Method Full-view Partial-view
mIoU Acc mAcc mIoU Acc mAcc

TZSLPC∗ 3.86 42.97 10.37 4.14 42.76 8.49
3DGenZ∗ 6.46 45.47 18.33 6.03 45.24 15.86
ZSLPC∗ 9.97 40.13 18.70 9.52 40.91 17.16

OpenAD-PointNet++ 13.53 3.97 16.40 11.29 2.41 13.88
OpenAD-PointNet++∗ 15.19 46.68 20.69 13.01 44.90 18.37
OpenAD-DGCNN 11.15 3.84 13.86 8.04 1.58 9.85
OpenAD-DGCNN∗ 12.97 46.45 18.23 9.88 44.09 14.53

Ours-Phi 30.43 29.36 47.78 27.25 27.87 39.04
Ours-Phi∗ 32.18 72.05 52.13 29.05 70.36 43.61

3
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as the ”none” category in metric calculations, we chose to exclude the ”none” category, as it holds
no practical significance. Our evaluation data exhibits a clear class imbalance, with the ”none”
category accounting for a large proportion. However, the ”none” category lacks real significance and
its disproportionate presence affects the evaluation of our results. Therefore, we chose to exclude
the ”none” category when calculating the metrics. In addition, we also update the evaluation results
with the ”none” category added in Figure 3. Experimental results demonstrate that, in the original
metric calculations of OpenAD, our model still maintains optimal performance.

Ours vs. LLM as Part-classfier

In our method, the LLM extracts its intrinsic world knowledge and outputs a <AFF> multimodal
representation to predict the affordance mask. In addition, we conducted an ablation experiment by
freezing the LLM, where it was used solely as a part classifier. As shown in Table 3, our method
effectively extracts prior knowledge of the LLM in affordance, resulting in a significant performance
improvement compared to the approach in which the LLM is used solely as a part classifier.

Table 4: Comparison with LLM as a part classifier vs ours 3D-ADLLM. Zero-short open-vocabulary
results on IRAS dataset all classes.

Method mIoU Acc mAcc

LLM-Classifier 24.42 20.83 42.43
Ours-Phi 30.43 29.36 47.78

Efforts of Different Components with Detailed Experiments

Basic Baseline A: Use the LLM to encode only text features, inputting them into the decoder along
with point features encoded by a standard backbone, like PointNet++.

Pretraining Variant B: Use the proposed pretraining task, ROPS, train variant A and then fine-tune
A on the IRAS task.

Backbone Variant C: Replace the point encoder with the same point segmentation backbone (Point
Transformer).

Dual Encoder Variant D: Introduce a second point encoder, initially using PointNet++, which outputs
point features to the LLM along with text tokens. The LLM’s output is then fed into the decoder
from Variant C.

Current Approach E: Test the full model with the proposed AFF token integration and two encoders
to measure the combined effectiveness of all components.

Comparison with previous approaches F: The fairest comparison to the previous approaches is to
remove the pretrain stage and replace your segmentation backbone with PointNet++.

Table 5: Detailed Ablation Study on Full-view dataset with metrics over all classes.

Method mIoU Acc mAcc

A(PN2) 20.88 21.36 37.41
B(PN2) 25.39 21.81 43.82
C-A(PT) 19.75 20.95 36.86
C-B(PT) 24.41 20.83 42.43
E (PN2) 27.92 29.20 47.40
E (PT) 30.43 29.36 47.78
D 24.16 25.04 40.21
F 23.40 24.17 35.43

(1)Setting A: By comparing Method A with OpenAD, we find that replacing the language model
with an LLM enhances the performance of OpenAD to a certain extent (mIoU:13.53 → 20.88),
which also reflects the impact of introducing a large language model.
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(2) Setting A vs.Setting B: By replacing the point backbone network with the standard PointNet++
backbone, the mIoU improves from 20.88 to 25.39, Acc increases from 21.36 to 21.81, and mAcc
rises from 37.41 to 43.82. This demonstrates that our multi-stage training strategy effectively en-
hances model’s performance on the task.

(3) Setting C: Comparing C-A(PT) and C-B(PT) with A(PN2) and B(PN2), C-A(PT) and C-
B(PT) have better performance than A(PN2) and B(PN2) respectively (C-B vs. B(A): mIoU:
24.41 → 25.39, Acc: 20.83 → 21.81, mAcc: 42.43 → 43.82). This shows that that the per-
formance improvement stems not from the backbone choice but from the proposed multi-training
strategy.

(4) Setting E: In our 3D-ADLLM, the point encoder fpe is frozen which outputs point features to
the LLM along with text tokens. Therefore, I believe that the comparison between E and B better
highlights the role of the <AFF> token marker. Comparing E(PN2) and E(PT) with B(PN2) and
B(PT), the <AFF> token extracts affordance-related prior information from the LLM, resulting in
an increase of mIoU by 2.53% (PN2), 6.02% (PT).

(5) Setting D: Initializeing the trainable PointNet++ to replace the frozen fpe PointBert-ULIP2. By
comparing setting D with setting E (PT), we find that in our method, initlizing fpe with a model
trained with point cloud and text alignment, and freezing fpe for further training is effective and
improves performance. Experimental results also validate our conclusion.

(6) Setting F: By removing the pretrain stage and replacing the point backbone with PointNet++,
we give the fairest comparison. Compared to LASO: mIoU: 22.41 → 23.40, Acc: 15.90 → 24.17,
mAcc: 30.22 → 65.43, our method outperforms previous approaches.
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