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A APPENDIX

A.1 EVALUATION OF MESSAGE FLOWS ON DYNAMIC GRAPHS

In Figure 6, we illustrate the computation of Fidelity for both dynamic and static graphs from the
perspective of computational graphs. The static graph G0 is considered an evolution of Gempty.
In the case of dynamic graphs, G1 evolves from the G0. After identifying the important message
flows, we adjust their weights to align with those in the destination graph, keeping the weights of
the remaining flows unchanged. This process generates a new computational graph Gn. In dynamic
graphs, adjusting the weights of selected important message flows may lead to differing weights
for the same-layer edges across various flows. However, GNN propagation rules require that edges
within each layer share a single weight. Thus, merging these flows while complying with GNN
propagation constraints is infeasible.
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Figure 6: Calculation of Fidelity for dynamic and static graphs. Challenges may arise during the computation
for dynamic graphs.

A.2 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

A.2.1 THE EXAMPLES ON THE NODE PREDICTION TASKS

Supposing the GNN models have two layers, considering the massage flow F = (V, I, J) ∈
the altered message flows set ∆F , We have derived in detail the calculation process of the con-
tribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

(10)

According to the multiplier designed by the DeepLIFT, m∆hT−2
V ∆zT−1

I
=

∆aT−1
V I θT−1,m∆zT−1

I ∆hT−1
I

=
∆hT−1

I

∆zT−1
I

,mzT−1
I hT−1

I
=

hT−1
I

zT−1
I

,mh1,T−2
V z1,T−1

I
= a1,T−1

V I θT−1,
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therefore,

Cs = ∆aT−1
V I a0,TIJ h1,T−2

V θT−1∆hT−1
I

∆zT−1
I

θT + a1,T−1
V I ∆aTIJh

1,T−2
V θT−1h

T−1
I

zT−1
I

θT (11)

Where the divide means the element-wise division, T = 2.

Similarly, Supposing the GNN models have three layers, considering the massage flow F =
(U, V, I, J) ∈ the altered message flows set ∆F , We have derived in detail the calculation pro-
cess of the contribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

= a0,TIJ

(
a0,T−2
UV ∆hT−3

U θT−2 +∆aT−2
UV h1,T−3

U θT−2
)
m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of ∆hU to ∆zJ

+ a0,TIJ

(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of hU to ∆zJ

+∆aTIJ
(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V z1,T−1
I

mz1,T−1
I h1,T−1

I
θT

the contribution of hU to ∆zJ

= ∆a0,T−2
UV a0,T−1

V I a0,TIJ h1,T−3
U θT−2∆hT−2

V

∆zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV ∆aT−1

V I a0,TIJ h1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV a1,T−1

V I ∆aTIJh
1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1h
T−1
I

zT−1
I

θT

(12)

A.2.2 ON THE LINK PREDICTION TASK

According to the equation 3, for the target edge eIJ , the zTI ∈ R1×d and zTJ ∈ R1×d are concate-
nated, and fed into a linear layer with the parameters θLP . According to the equation 7, we can
obtain the contribution of message flow FV1,V2,··· ,VT ,VT+1

to ∆zTI or ∆zTJ , then the contribution of
message flow to the ∆zIJ = zIJ(G1)− zIJ(G0) is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θTθ′
LP

) (13)

Where θ′
LP = θLP [0 : d], d if VT+1 = I , θ′

LP = θLP [d :], if VT+1 = J
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A.2.3 ON THE GRAPH CLASSIFICATION TASK

Because the average pooling is used for the graph classification tasks, ∆z = z(G1) − z(G0) =∑
J∈

(
V0∪V1

)∆zTJ
/
|V0 ∪ V1|, thus the contribution is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T ]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
/|V0 ∪ V1|

(14)

Where, V0 and V1 denote the the nodes set of graph G0 and G1, respectively.

A.3 MAPPING CONTRIBUTIONS FOR THE GRAPH CLASSIFICATION TASK

In the section 3.2, we show how to calculate the Shapley value, i.e. contribution ϕat
F[t−1]F[t]

(F)

of layer edge atF [t−1]F [t] to ∆zTFT
. Note that the changed layer edge can affect many nodes, not

the single node. Thus, in the graph classification task, the contribution matrix of l-th layer edge
atF [t−1]F [t] ∈ ∆A is Φl ∈ R|V0∪V1|×c, the row vector Φl

i = ϕat
F[t−1]F[t]

(F) denotes the contribu-

tion of the l-th layer edge to ∆zTFT
, where the i-th node in the V0 ∪ V1 is FT . Let Φ =

∑|∆A|
l=1 Φl,

the Φ also follows the summation-to-delta property
∑|V0∪V1|

i=1 Φi = ∆z = z(G1)− z(G0)

A.4 SELECTING THE IMPORTANT LAYER EDGES

A.4.1 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of layer edges, where
Φl represents the contribution of l-th layer edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th
layer edge to ∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆A|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆A|∑
l=1

xlΦl,ℓ′

 (15)

A.4.2 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g′

 (16)

A.5 SELECTING THE IMPORTANT LAYER EDGES FOR LINK PREDICTION

Selecting the important layer edges for link prediction task can be seen in Algorithm 2.
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Algorithm 2 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
link prediction task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (13)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: According to the section 3.2 and Eq. (??), calculate ϕat
F[t−1]F[t]

(F)

11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat
F[t−1]F[t]

(F)

12: end for
13: end for
14: Solve Eq. (15) to obtain the important changed layer edges
15: Output: The important changed layer edges set

A.5.1 SELECTING THE IMPORTANT LAYER EDGES FOR GRAPH CLASSIFICATION

Selecting the important layer edges for graph classification task can be seen in Algorithm 3.

Algorithm 3 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
4: for s for 1 to |∆F | do
5: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (14)
6: obtain the changed layer edges set ∆AF on this flow
7: for atF [t−1]F [t] in ∆AF do
8: According to the section 3.2 and Eq. (??), calculate ϕat

F[t−1]F[t]
(F)

9: Let the index of atF [t−1]F [t] in ∆A is l. Let the index of F [T ] in the V0 ∪ V1 is i
10: Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

11: end for
12: end for
13: Solving the Eq. (16) to obtain the important changed layer edges
14: Output: The important changed layer edges set

A.6 OBTAIN THE IMPORTANT INPUT EDGES

A.6.1 ON THE NODE CLASSIFICATION TASK

Let Φ denotes the contribution matrix of edges, where Φl represents the contribution of l-th edge to
∆zJ , and Φl,k indicates the contribution of l-th edge to ∆zk, we can define the following objective
function for the node classification:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆E|∑
l=1

xlΦl,k



+ log

c∑
k′=1

exp

zk′(G0) +

|∆E|∑
l=1

xlΦl,k′

 (17)
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A.6.2 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of edges, where Φl

represents the contribution of l-th edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th edge to
∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆E|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆E|∑
l=1

xlΦl,ℓ′

 (18)

A.6.3 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g′

 (19)

A.6.4 SELECTING THE IMPORTANT INPUT EDGES

Selecting the important input edges for node classification and link prediction can be seen in the
Algorithm 4. The selection of important input edges for graph classification can be seen in the
Algorithm 5.

A.7 EXPERIMENTS

A.7.1 DATASETS

In the simulated dynamic graphs, we modify edge weights without adding or removing edges.
Specifically, given a changed ratio r, we randomly adjust the the weights of |E0| × r edges to
create evolving graphs. For the real dynamic graph datasets used in the node classification and link
prediction tasks, timestamps allow us to track graph evolution, which includes modifications to edge
weights, as well as the addition and deletion of edges. In graph classification, we apply slight per-
turbations to the graphs You et al. (2018), by randomly adding or removing edges or altering edge
weights.

• YelpChi, YelpNYC Rayana & Akoglu (2015): each node represents a review, product, or user. If
a user posts a review to a product, there are edges between the user and the review, and between
the review and the product. The data sets are used for node classification.

• Pheme Zubiaga et al. (2017) and Weibo Ma et al. (2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.

• BC-OTC1 and BC-Alpha2: is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

1http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
2http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
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Algorithm 4 Selecting important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification and link prediction tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the changed edges set ∆E = {aUV : a0UV ̸= a1UV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Initialize layer edges contribution matrix Φ ∈ R|∆E|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
5: if The node classification task then
6: Given the target node J , ∆F = {F : F ∈ ∆F and F [T ] = J}
7: else if The link prediction task then
8: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T ] = I or F [T ] = J)}
9: end if

10: for F in |∆F | do
11: According to the Eq. (7) (node classification) or Eq. (13) (link prediction), calculate the

message flow contribution c
12: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

13: for aF [t−1]F [t] in ∆EF do
14: According to the Section 3.2 and Eq. (??), calculate ϕaF[t−1]F[t]

(F).
15: Let the aF [t−1]F [t] is the l-th edge in ∆E , Φl = Φl + ϕaF[t−1]F[t]

(F)
16: end for
17: end for
18: Solving the Eq. (17) (node classification) or Eq. (18) (link prediction) to obtain the important

changed input edges
19: Output: The important changed input edges set

Algorithm 5 Selecting the important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on
the graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A = {atUV : a0,tUV ̸= a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T ]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
4: for l for 1 to |∆A| do
5: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
6: end for
7: for F in |∆F | do
8: According to the Eq. (14), calculate the message flow contribution c
9: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

10: for atF [t−1]F [t] in ∆EF do
11: According to the section 3.2 and Eq. (??), calculate ϕat

F[t−1]F[t]
(F)

12: Let the atF [t−1]F [t] is the l-th layer edge in ∆E , F [T ] is the i-th node in the V0 ∪ V1,
Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

13: end for
14: end for
15: Solving the Eq. (19) to obtain the important changed input edges
16: Output: The important changed input edges set
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• UCI3: is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

• MUTAG Debnath et al. (1991): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

• ClinTox Gayvert et al. (2016):compares drugs approved through FDA and drugs eliminated due
to the toxicity during clinical trials.

• IMDB-BINARY is movie collaboration datasets. Each graph corresponds to an ego-network for
each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two
actors/actresses if they appear in the same movie.Each graph is derived from a pre-specified genre
of movies, and the task is to classify the genre graph it is derived from.

• REDDIT-BINARY is balanced datasets whereeach graph corresponds to an online discussion
thread and nodes correspond to users. An edge was drawn between two nodes if at least one
of them responded to another’s comment. The task is to classify each graph to a community or a
subreddit it belongs to.

Table 2: The details of datasets

Datasets Nodes(Avg. Nodes) Edges(Avg. Edges) task

YelpChi 105,659 375,239 node classification
YelpNYC 520,200 1,956,408 node classification

weibo 4,657 node classification
pheme 5,748 node classification

BC-OTC 5,881 35,588 link prediction
BC-Alpha 3,777 24,173 link prediction

UCI 1,899 59,835 link prediction

MUTAG 17.93 19.79 graph classification
ClinTox 26.1 55.5 graph classification

IMDB-BINARY 19.8 193.1 graph classification
REDDIT-BINARY 429.6 995.5 graph classification

Table 3: The changed ration r on different datasets

YelpChi YelpNYC Weibo Pheme BC-OTC BC-Alpha UCI MUTAG ClinTox IMDB-
BINARY

REDDIT-
BINARY

1 1 1 1 0.5 0.6 0.4 1 1 1 1

A.7.2 BASSLINES

• GNNExplainer is designed to explain GNN predictions for node and graph classification on static
graphs. We train the explainer on graphs G0 and G1 to obtain the edges contribution Φ0 and Φ1.
The final edges contribution is given by Φ = Φ1 − Φ0 if the predicted class on G0 and G1 are
different. Otherwise, Φ = Φ1. The top-K edges are selected based on Φ as the explanations.

• PGExplainer learns approximated discrete masks for edges to explain the predictions, with im-
portant edges selected in the same manner as GNNExplainer.

• GNN-LRP utilizes the back-propagation attribution method LRP to GNN Schnake et al. (2020),
attributing the class probability Pr(Y = k|G1) to input neurons regardless of Pr(Y |G0), thereby
obtaining contribution scores for message flows. It uses a summation function to map these con-
tributions to edges, with edge selection consistent with GNNExplainer.

• DeepLIFT Shrikumar et al. (2017) attributes the log-odd between two probabilities Pr(Y =
k|G0) and Pr(Y = k′|G1), where k ̸= k′, to the message flows. Then it uses a summation
function to obtain contributions of edges. The edge selection process is consistent with GNNEx-
plainer.

3http://konect.cc/networks/opsahl-ucsocial
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• FlowX applies the Shapley value to derive initial contributions of message flows, subsequently
training these scores by defining loss functions. A summation function is employed to map con-
tributions to edges, with edge selection aligned with GNNExplainer.

A.7.3 EXPERIMENTAL SETUP

We trained the two layers GNN. utilizing element-wise sum as the aggregation function fAGG.
The logit for node J is denoted by zJ(G). For node classification, zJ(G) is mapped to the class
distribution through the softmax function. For the link prediction, we concatenate zI(G) and zJ(G)
as the input to a linear layer to obtain the logits, which are then mapped to the probability of the
existence of the edge (I , J). For the graph classification task, the average pooling of zJ(G) across
all nodes in G can produce a single vector representation z(G) for classification. It can be mapped to
the class probability distribution through the softmax function. During training, we set the learning
rate to 0.01, the dropout rate to 0.2 and the hidden size to 16. The model is trained and then fixed
during the prediction and explanation stages.

A.7.4 THE PREDEFINED SPARSITY

On the real dynamic graphs, the sparsity of explanations across various datasets and tasks is illus-
trated in Table 4. The sparsity of simulated dynamic graphs is illustrated in Table 5. The sparsity
is small, but our method can also achieve the better performance than the baselines.

Table 4: The sparsity of explanations on real dynamic graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.996 0.992 0.988 0.994 0.98
YelpNYC 0.998 0.997 0.996 0.995 0.994

weibo 0.996 0.993 0.99 0.986 0.982
pheme 0.98 0.96 0.94 0.92 0.9

BC-OTC 0.996 0.995 0.994 0.993 0.992
BC-Alpha 0.995 0.994 0.993 0.992 0.991

UCI 0.998 0.997 0.996 0.994 0.992

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.991 0.982 0.973 0.964 0.954

IMDB-BINARY 0.996 0.991 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.997 0.996 0.995 0.994

Table 5: The sparsity of explanations on different simulated graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.999 0.998 0.997 0.996 0.995
YelpNYC 0.9994 0.9988 0.9981 0.9975 0.9965

weibo 0.9972 0.9945 0.992 0.989 0.986
pheme 0.982 0.963 0.945 0.927 0.908

BC-OTC 0.967 0.95 0.935 0.918 0.9
BC-Alpha 0.95 0.91 0.87 0.83 0.79

UCI 0.999 0.998 0.997 0.996 0.995

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.99 0.98 0.97 0.96 0.95

IMDB-BINARY 0.996 0.992 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.996 0.994 0.992 0.99

A.7.5 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods across three tasks: node classification, link predic-
tion and graph classification in simulate dynamic graph scene, as illustrated in Figure 7. For
each dataset, we report the average KL over target nodes/edges/graphs. From Figure 7, we can see
that our method AxiomLayeredge has the smallest KL across all levels of explanation sparsity and
datasets and tasks, with exception of Weibo, Pheme and certain sparsity levels of YelpNYC dataset.
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Figure 7: Performance in KL as G0 → G1. Each column corresponds to a different dataset. The first, second
and third rows represent node classification, link prediction and graph classification tasks, respectively.

In datasets with dense graph structures (YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, IMDB-
BINARYdand REDDIT-BINAYR), the AxiomLayeredge-TopK method ranks third. This indicates
that our designed message flow contribution value Algorithm can effectively explain the dynamic
graphs. In seven experimental settings (Weibo, YelpChi, YelpNYC, BC-Alpha, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution.
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