
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed
Irvine, Souti Chattopadhyay, Matthew Olson, Alan Fern, and Margaret Burnett. Mental models
of mere mortals with explanations of reinforcement learning. ACM Transactions on Interactive
Intelligent Systems (TiiS), 10(2):1–37, 2020.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.

Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional net-
works. In ICML Workshop, 2019.

Asim Kumar Debnath, Rosa L. Lopez de Compadre, Gargi Debnath, Alan J. Shusterman, and Cor-
win Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. correlation with molecular orbital energies and hydrophobicity. 1991.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research.

Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting
successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301, 2016.

Shurui Gui, Hao Yuan, Jie Wang, Qicheng Lao, Kang Li, and Shuiwang Ji. Flowx: Towards ex-
plainable graph neural networks via message flows. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, Dawei Yin, and Yi Chang.
Graphlime: Local interpretable model explanations for graph neural networks. arXiv preprint
arXiv:2001.06216, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Vivian Lai and Chenhao Tan. On Human Predictions with Explanations and Predictions of Machine
Learning Models: A Case Study on Deception Detection. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, 2019.

Yunqi Li, Yingqiang Ge, and Yongfeng Zhang. Tutorial on fairness of machine learning in recom-
mender systems. In Proceedings of the 44th international ACM SIGIR conference on research
and development in information retrieval, pp. 2654–2657, 2021.

Yazheng Liu, Xi Zhang, and Sihong Xie. A differential geometric view and explainability of gnn on
evolving graphs. arXiv preprint arXiv:2403.06425, 2024.

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang
Zhang. Parameterized explainer for graph neural network. Advances in neural information pro-
cessing systems, 33:19620–19631, 2020.

Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on twitter with tree-structured recursive
neural networks. ACL, 2018.

Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann. Ex-
plainability methods for graph convolutional neural networks. In CVPR, 2019.

Gabriëlle Ras, Marcel van Gerven, and Pim Haselager. Explanation methods in deep learning:
Users, values, concerns and challenges. Explainable and interpretable models in computer vision
and machine learning, pp. 19–36, 2018.

Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks
and metadata. In KDD, 2015.

Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting graph neural networks for
nlp with differentiable edge masking. arXiv preprint arXiv:2010.00577, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima Kristof T. Sch¨utt, Klaus-Robert
M¨uller, and Gr´egoire Montavon. Higher-order explanations of graph neural networks via rele-
vant walks. 2020.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In International conference on machine learning, pp. 3145–
3153. PMlR, 2017.

Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wenjie Li, and
Zhongyuan Wang. Knowledge-aware graph neural networks with label smoothness regulariza-
tion for recommender systems. In KDD, 2019a.

Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xion. FdGars: Fraudster Detection via
Graph Convolutional Networks in Online App Review System. In WWW, 2019b.

Zhenqin Wu, Bharath Ramsundarand Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: a benchmark for molecular machine
learning. 2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In KDD, 2018.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. GNNExplainer:
Generating Explanations for Graph Neural Networks. In NeurIPS, 2019.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional pol-
icy network for goal-directed molecular graph generation. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. 2020a.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. arXiv preprint arXiv:2012.15445, 2020b.

Arkaitz Zubiaga, Maria Liakata, and Rob Procter. Exploiting context for rumour detection in social
media. In ICSI, pp. 109–123, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EVALUATION OF MESSAGE FLOWS ON DYNAMIC GRAPHS

In Figure 6, we illustrate the computation of Fidelity for both dynamic and static graphs from the
perspective of computational graphs. The static graph G0 is considered an evolution of Gempty.
In the case of dynamic graphs, G1 evolves from the G0. After identifying the important message
flows, we adjust their weights to align with those in the destination graph, keeping the weights of
the remaining flows unchanged. This process generates a new computational graph Gn. In dynamic
graphs, adjusting the weights of selected important message flows may lead to differing weights
for the same-layer edges across various flows. However, GNN propagation rules require that edges
within each layer share a single weight. Thus, merging these flows while complying with GNN
propagation constraints is infeasible.

J

I L

J K

0 0

0 0 0

J

I L

J K

0.2 0.3

0.2 0.3 0.4

GsourceGsource

K

L

J

Δ = 0.3Δ = 0.3
Δ = 0.4Δ = 0.4+

Import message flows

J

I L

J K

0 0.3

0 0 0.4

GnGn GdestinationGdestination

J

I L

J K

0.2 0.3

0.2 0.3 0.4

New
computational

graph

Fidelity

+

K

L

J

Δ = − 0.2Δ = − 0.2

New
computational

graph

Δ = 0.02Δ = 0.02

J

L

J

0.3

0.3

J

L

K

0.1

0.42

How to
combine?

J

I LK

J LK

0

0

0.3 0.1

0.3 0.420.1

0.42

GemptyGempty

G1G1G0G0

G0G0

Static
graphs

Dynamic
graphs

Fidelity

?

Figure 6: Calculation of Fidelity for dynamic and static graphs. Challenges may arise during the computation
for dynamic graphs.

A.2 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS

A.2.1 THE EXAMPLES ON THE NODE PREDICTION TASKS

Supposing the GNN models have two layers, considering the massage flow F = (V, I, J) ∈
the altered message flows set ∆F , We have derived in detail the calculation process of the con-
tribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

(10)

According to the multiplier designed by the DeepLIFT, m∆hT−2
V ∆zT−1

I
=

∆aT−1
V I θT−1,m∆zT−1

I ∆hT−1
I

=
∆hT−1

I

∆zT−1
I

,mzT−1
I hT−1

I
=

hT−1
I

zT−1
I

,mh1,T−2
V z1,T−1

I
= a1,T−1

V I θT−1,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

therefore,

Cs = ∆aT−1
V I a0,TIJ h1,T−2

V θT−1∆hT−1
I

∆zT−1
I

θT + a1,T−1
V I ∆aTIJh

1,T−2
V θT−1h

T−1
I

zT−1
I

θT (11)

Where the divide means the element-wise division, T = 2.

Similarly, Supposing the GNN models have three layers, considering the massage flow F =
(U, V, I, J) ∈ the altered message flows set ∆F , We have derived in detail the calculation pro-
cess of the contribution value of message flow:

Cs = a0,TIJ ∆ht−1
I θT +∆atIJh

1,t−1
I θT the contribution of ∆hI , hI to ∆zJ

= a0,TIJ

(
∆zT−1

I m∆zT−1
I ∆hT−1

I

)
θT the contribution of ∆zI to ∆hI

+∆aTIJ
(
z1,T−1
I mz1,T−1

I h1,T−1
I

)
θT the contribution of zI to hI

= a0,TIJ ∆hT−2
V m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of ∆hV to ∆zJ

+ a0,TIJ h1,T−2
V mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT the contribution of hV to ∆zJ

+∆aTIJ
(
h1,T−2
V mh1,T−2

V z1,T−1
I

)
mz1,T−1

I h1,T−1
I

θT the contribution of hV to ∆zJ

= a0,TIJ

(
a0,T−2
UV ∆hT−3

U θT−2 +∆aT−2
UV h1,T−3

U θT−2
)
m∆hT−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of ∆hU to ∆zJ

+ a0,TIJ

(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V ∆zT−1
I

m∆zT−1
I ∆hT−1

I
θT

the contribution of hU to ∆zJ

+∆aTIJ
(
hT−3
U mh1,T−3

U z1,T−2
V

mz1,T−2
V h1,T−2

V

)
mh1,T−2

V z1,T−1
I

mz1,T−1
I h1,T−1

I
θT

the contribution of hU to ∆zJ

= ∆a0,T−2
UV a0,T−1

V I a0,TIJ h1,T−3
U θT−2∆hT−2

V

∆zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV ∆aT−1

V I a0,TIJ h1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1∆hT−1
I

∆zT−1
I

θT

+ a1,T−2
UV a1,T−1

V I ∆aTIJh
1,T−3
U θT−2h

T−2
V

zT−2
V

θT−1h
T−1
I

zT−1
I

θT

(12)

A.2.2 ON THE LINK PREDICTION TASK

According to the equation 3, for the target edge eIJ , the zTI ∈ R1×d and zTJ ∈ R1×d are concate-
nated, and fed into a linear layer with the parameters θLP . According to the equation 7, we can
obtain the contribution of message flow FV1,V2,··· ,VT ,VT+1

to ∆zTI or ∆zTJ , then the contribution of
message flow to the ∆zIJ = zIJ(G1)− zIJ(G0) is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θTθ′
LP

) (13)

Where θ′
LP = θLP [0 : d], d if VT+1 = I , θ′

LP = θLP [d :], if VT+1 = J

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2.3 ON THE GRAPH CLASSIFICATION TASK

Because the average pooling is used for the graph classification tasks, ∆z = z(G1) − z(G0) =∑
J∈

(
V0∪V1

)∆zTJ
/
|V0 ∪ V1|, thus the contribution is:

Cs =

T−1∑
t=0

(
a1,1F [0]F [1]a

1,2
F [1]F [2] · · ·∆at+1

F [t]F [t+1]a
0,t+2
F [t+1],F [t+2] · · · a

0,T
F [T−1],F [T]

h1,0
F [0]

h1,1
F [1]

z1,1F [1]

· · ·
h1,t
F [t]

z1,tF [t]

θt
∆ht+1

F [t+1]

∆zt+1
F [t+1]

θt+1 · · ·
∆hT−1

F [T−1]

∆zT−1
F [T−1]

θT

)
/|V0 ∪ V1|

(14)

Where, V0 and V1 denote the the nodes set of graph G0 and G1, respectively.

A.3 MAPPING CONTRIBUTIONS FOR THE GRAPH CLASSIFICATION TASK

In the section 3.2, we show how to calculate the Shapley value, i.e. contribution ϕat
F[t−1]F[t]

(F)

of layer edge atF [t−1]F [t] to ∆zTFT
. Note that the changed layer edge can affect many nodes, not

the single node. Thus, in the graph classification task, the contribution matrix of l-th layer edge
atF [t−1]F [t] ∈ ∆A is Φl ∈ R|V0∪V1|×c, the row vector Φl

i = ϕat
F[t−1]F[t]

(F) denotes the contribu-

tion of the l-th layer edge to ∆zTFT
, where the i-th node in the V0 ∪ V1 is FT . Let Φ =

∑|∆A|
l=1 Φl,

the Φ also follows the summation-to-delta property
∑|V0∪V1|

i=1 Φi = ∆z = z(G1)− z(G0)

A.4 SELECTING THE IMPORTANT LAYER EDGES

A.4.1 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of layer edges, where
Φl represents the contribution of l-th layer edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th
layer edge to ∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆A|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆A|∑
l=1

xlΦl,ℓ′

 (15)

A.4.2 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆A|∑
l=1

xlΦ
l
i,g′

 (16)

A.5 SELECTING THE IMPORTANT LAYER EDGES FOR LINK PREDICTION

Selecting the important layer edges for link prediction task can be seen in Algorithm 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
link prediction task

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φ ∈ R|∆A|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F
5: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T] = I or F [T] = J)}
6: for s for 1 to |∆F | do
7: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (13)
8: Obtain the changed layer edges set ∆AF on this flow
9: for atF [t−1]F [t] in ∆AF do

10: According to the section 3.2 and Eq. (??), calculate ϕat
F[t−1]F[t]

(F)

11: Let the index of atF [t−1]F [t] in ∆A is l, Φl = Φl + ϕat
F[t−1]F[t]

(F)

12: end for
13: end for
14: Solve Eq. (15) to obtain the important changed layer edges
15: Output: The important changed layer edges set

A.5.1 SELECTING THE IMPORTANT LAYER EDGES FOR GRAPH CLASSIFICATION

Selecting the important layer edges for graph classification task can be seen in Algorithm 3.

Algorithm 3 Selecting important layer edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A
3: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
4: for s for 1 to |∆F | do
5: Select the s-th message flow in |∆F | and calculate Cs according to the Eq. (14)
6: obtain the changed layer edges set ∆AF on this flow
7: for atF [t−1]F [t] in ∆AF do
8: According to the section 3.2 and Eq. (??), calculate ϕat

F[t−1]F[t]
(F)

9: Let the index of atF [t−1]F [t] in ∆A is l. Let the index of F [T] in the V0 ∪ V1 is i
10: Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

11: end for
12: end for
13: Solving the Eq. (16) to obtain the important changed layer edges
14: Output: The important changed layer edges set

A.6 OBTAIN THE IMPORTANT INPUT EDGES

A.6.1 ON THE NODE CLASSIFICATION TASK

Let Φ denotes the contribution matrix of edges, where Φl represents the contribution of l-th edge to
∆zJ , and Φl,k indicates the contribution of l-th edge to ∆zk, we can define the following objective
function for the node classification:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
k=1

−Prk(G1)

|∆E|∑
l=1

xlΦl,k



+ log

c∑
k′=1

exp

zk′(G0) +

|∆E|∑
l=1

xlΦl,k′

 (17)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.6.2 ON THE LINK PREDICTION TASK

For the link prediction, the zIJ(G) = [z1, · · · , zℓ · · · , zc],PrIJ(G) =
[Pr1(G), · · · ,Prℓ · · · ,Prc(G)], Let Φ denotes the contribution matrix of edges, where Φl

represents the contribution of l-th edge to ∆zIJ , and Φl,ℓ indicates the contribution of l-th edge to
∆zℓ, we can define the following objective function for the link prediction:

x∗ = argmin
x∈{0,1}|∆E|

∥x∥1=n

c∑
ℓ=1

−Prℓ(G1)

|∆E|∑
l=1

xlΦl,ℓ



+ log

c∑
ℓ′=1

exp

zℓ′(G0) +

|∆E|∑
l=1

xlΦl,ℓ′

 (18)

A.6.3 ON THE GRAPH CLASSIFICATION TASK

For the graph classification, the Φl denotes contribution matrix of the l-th layer edge in
the ∆A. The logits of the graph classification zG = [z1, · · · , zg · · · , zc], the Pr(G) =

[Pr1(G), · · · ,Prg · · · ,Prc(G)], because the
∑|V0∪V1|

i=1

∑|∆A|
l=1 Φl

i = ∆z = ∆z(G1) − ∆z(G0),
the objective function for the graph classification task is:

x∗ = argmin
x∈{0,1}|∆A|

∥x∥1=n

c∑
g=1

−Prg(G1)

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g



+ log

c∑
g′=1

exp

zg′(G0) +

|V0∪V1|∑
i=1

|∆E|∑
l=1

xlΦ
l
i,g′

 (19)

A.6.4 SELECTING THE IMPORTANT INPUT EDGES

Selecting the important input edges for node classification and link prediction can be seen in the
Algorithm 4. The selection of important input edges for graph classification can be seen in the
Algorithm 5.

A.7 EXPERIMENTS

A.7.1 DATASETS

In the simulated dynamic graphs, we modify edge weights without adding or removing edges.
Specifically, given a changed ratio r, we randomly adjust the the weights of |E0| × r edges to
create evolving graphs. For the real dynamic graph datasets used in the node classification and link
prediction tasks, timestamps allow us to track graph evolution, which includes modifications to edge
weights, as well as the addition and deletion of edges. In graph classification, we apply slight per-
turbations to the graphs You et al. (2018), by randomly adding or removing edges or altering edge
weights.

• YelpChi, YelpNYC Rayana & Akoglu (2015): each node represents a review, product, or user. If
a user posts a review to a product, there are edges between the user and the review, and between
the review and the product. The data sets are used for node classification.

• Pheme Zubiaga et al. (2017) and Weibo Ma et al. (2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.

• BC-OTC1 and BC-Alpha2: is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

1http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
2http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html

17

http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 4 Selecting important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on the
node classification and link prediction tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the changed edges set ∆E = {aUV : a0UV ̸= a1UV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Initialize layer edges contribution matrix Φ ∈ R|∆E|×c as an all-zero matrix
4: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
5: if The node classification task then
6: Given the target node J , ∆F = {F : F ∈ ∆F and F [T] = J}
7: else if The link prediction task then
8: Given the target edge IJ , ∆F = {F : F ∈ ∆F and (F [T] = I or F [T] = J)}
9: end if

10: for F in |∆F | do
11: According to the Eq. (7) (node classification) or Eq. (13) (link prediction), calculate the

message flow contribution c
12: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

13: for aF [t−1]F [t] in ∆EF do
14: According to the Section 3.2 and Eq. (??), calculate ϕaF[t−1]F[t]

(F).
15: Let the aF [t−1]F [t] is the l-th edge in ∆E , Φl = Φl + ϕaF[t−1]F[t]

(F)
16: end for
17: end for
18: Solving the Eq. (17) (node classification) or Eq. (18) (link prediction) to obtain the important

changed input edges
19: Output: The important changed input edges set

Algorithm 5 Selecting the important input edges to explain evolution of Pr(Y |G0) to Pr(Y |G1) on
the graph classification tasks

1: Input: the source graph G0 and the destination graph G1, Pre-trained GNN parameters θ
2: Obtain the layer edges flow set ∆A = {atUV : a0,tUV ̸= a1,tUV , t ∈ {1, . . . , T}, U, V ∈ V0 ∪ V1}
3: Obtain the altered massage flows set ∆F = {F : F = (F [0], . . . ,F [t] . . .F [T]), a0,tF [t−1]F [t] ̸=

a1,tF [t−1]F [t], t = 1, . . . , T}
4: for l for 1 to |∆A| do
5: Initialize layer edges contribution matrix Φl ∈ R|V0∪V1|×c as an all-zero matrix
6: end for
7: for F in |∆F | do
8: According to the Eq. (14), calculate the message flow contribution c
9: obtain the changed edges set ∆EF = {aF [t−1]F [t] : a

0
F [t−1]F [t] ̸= a1F [t−1]F [t]} on this flow

10: for atF [t−1]F [t] in ∆EF do
11: According to the section 3.2 and Eq. (??), calculate ϕat

F[t−1]F[t]
(F)

12: Let the atF [t−1]F [t] is the l-th layer edge in ∆E , F [T] is the i-th node in the V0 ∪ V1,
Φl

i = Φl
i + ϕat

F[t−1]F[t]
(F)

13: end for
14: end for
15: Solving the Eq. (19) to obtain the important changed input edges
16: Output: The important changed input edges set

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• UCI3: is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

• MUTAG Debnath et al. (1991): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

• ClinTox Gayvert et al. (2016):compares drugs approved through FDA and drugs eliminated due
to the toxicity during clinical trials.

• IMDB-BINARY is movie collaboration datasets. Each graph corresponds to an ego-network for
each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two
actors/actresses if they appear in the same movie.Each graph is derived from a pre-specified genre
of movies, and the task is to classify the genre graph it is derived from.

• REDDIT-BINARY is balanced datasets whereeach graph corresponds to an online discussion
thread and nodes correspond to users. An edge was drawn between two nodes if at least one
of them responded to another’s comment. The task is to classify each graph to a community or a
subreddit it belongs to.

Table 2: The details of datasets

Datasets Nodes(Avg. Nodes) Edges(Avg. Edges) task

YelpChi 105,659 375,239 node classification
YelpNYC 520,200 1,956,408 node classification

weibo 4,657 node classification
pheme 5,748 node classification

BC-OTC 5,881 35,588 link prediction
BC-Alpha 3,777 24,173 link prediction

UCI 1,899 59,835 link prediction

MUTAG 17.93 19.79 graph classification
ClinTox 26.1 55.5 graph classification

IMDB-BINARY 19.8 193.1 graph classification
REDDIT-BINARY 429.6 995.5 graph classification

Table 3: The changed ration r on different datasets

YelpChi YelpNYC Weibo Pheme BC-OTC BC-Alpha UCI MUTAG ClinTox IMDB-
BINARY

REDDIT-
BINARY

1 1 1 1 0.5 0.6 0.4 1 1 1 1

A.7.2 BASSLINES

• GNNExplainer is designed to explain GNN predictions for node and graph classification on static
graphs. We train the explainer on graphs G0 and G1 to obtain the edges contribution Φ0 and Φ1.
The final edges contribution is given by Φ = Φ1 − Φ0 if the predicted class on G0 and G1 are
different. Otherwise, Φ = Φ1. The top-K edges are selected based on Φ as the explanations.

• PGExplainer learns approximated discrete masks for edges to explain the predictions, with im-
portant edges selected in the same manner as GNNExplainer.

• GNN-LRP utilizes the back-propagation attribution method LRP to GNN Schnake et al. (2020),
attributing the class probability Pr(Y = k|G1) to input neurons regardless of Pr(Y |G0), thereby
obtaining contribution scores for message flows. It uses a summation function to map these con-
tributions to edges, with edge selection consistent with GNNExplainer.

• DeepLIFT Shrikumar et al. (2017) attributes the log-odd between two probabilities Pr(Y =
k|G0) and Pr(Y = k′|G1), where k ̸= k′, to the message flows. Then it uses a summation
function to obtain contributions of edges. The edge selection process is consistent with GNNEx-
plainer.

3http://konect.cc/networks/opsahl-ucsocial

19

http://konect.cc/networks/opsahl-ucsocial

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• FlowX applies the Shapley value to derive initial contributions of message flows, subsequently
training these scores by defining loss functions. A summation function is employed to map con-
tributions to edges, with edge selection aligned with GNNExplainer.

A.7.3 EXPERIMENTAL SETUP

We trained the two layers GNN. utilizing element-wise sum as the aggregation function fAGG.
The logit for node J is denoted by zJ(G). For node classification, zJ(G) is mapped to the class
distribution through the softmax function. For the link prediction, we concatenate zI(G) and zJ(G)
as the input to a linear layer to obtain the logits, which are then mapped to the probability of the
existence of the edge (I , J). For the graph classification task, the average pooling of zJ(G) across
all nodes in G can produce a single vector representation z(G) for classification. It can be mapped to
the class probability distribution through the softmax function. During training, we set the learning
rate to 0.01, the dropout rate to 0.2 and the hidden size to 16. The model is trained and then fixed
during the prediction and explanation stages.

A.7.4 THE PREDEFINED SPARSITY

On the real dynamic graphs, the sparsity of explanations across various datasets and tasks is illus-
trated in Table 4. The sparsity of simulated dynamic graphs is illustrated in Table 5. The sparsity
is small, but our method can also achieve the better performance than the baselines.

Table 4: The sparsity of explanations on real dynamic graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.996 0.992 0.988 0.994 0.98
YelpNYC 0.998 0.997 0.996 0.995 0.994

weibo 0.996 0.993 0.99 0.986 0.982
pheme 0.98 0.96 0.94 0.92 0.9

BC-OTC 0.996 0.995 0.994 0.993 0.992
BC-Alpha 0.995 0.994 0.993 0.992 0.991

UCI 0.998 0.997 0.996 0.994 0.992

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.991 0.982 0.973 0.964 0.954

IMDB-BINARY 0.996 0.991 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.997 0.996 0.995 0.994

Table 5: The sparsity of explanations on different simulated graph datasets

Datasets Sparsity level 1 Sparsity level 2 Sparsity level 3 Sparsity level 4 Sparsity level 5

YelpChi 0.999 0.998 0.997 0.996 0.995
YelpNYC 0.9994 0.9988 0.9981 0.9975 0.9965

weibo 0.9972 0.9945 0.992 0.989 0.986
pheme 0.982 0.963 0.945 0.927 0.908

BC-OTC 0.967 0.95 0.935 0.918 0.9
BC-Alpha 0.95 0.91 0.87 0.83 0.79

UCI 0.999 0.998 0.997 0.996 0.995

MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.99 0.98 0.97 0.96 0.95

IMDB-BINARY 0.996 0.992 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.996 0.994 0.992 0.99

A.7.5 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods across three tasks: node classification, link predic-
tion and graph classification in simulate dynamic graph scene, as illustrated in Figure 7. For
each dataset, we report the average KL over target nodes/edges/graphs. From Figure 7, we can see
that our method AxiomLayeredge has the smallest KL across all levels of explanation sparsity and
datasets and tasks, with exception of Weibo, Pheme and certain sparsity levels of YelpNYC dataset.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Performance in KL as G0 → G1. Each column corresponds to a different dataset. The first, second
and third rows represent node classification, link prediction and graph classification tasks, respectively.

In datasets with dense graph structures (YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, IMDB-
BINARYdand REDDIT-BINAYR), the AxiomLayeredge-TopK method ranks third. This indicates
that our designed message flow contribution value Algorithm can effectively explain the dynamic
graphs. In seven experimental settings (Weibo, YelpChi, YelpNYC, BC-Alpha, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y |G0;θ) to Pr(Y |G1;θ), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution.

21

	Introduction
	Preliminaries
	Graph neural networks
	The message flow view of GNN
	Evolving graphs

	Method
	Calculate the contribution of message flows
	DeepLIFT
	DeepLIFT for GNN

	Apply the Shapley value to map message flow contributions to layer edges
	Select the important layer edges

	Experiment
	Related Work
	Conclusions
	appendix
	Evaluation of message flows on dynamic graphs
	Calculate the contribution of message flows
	The examples on the node prediction tasks
	On the link prediction task
	On the graph classification task

	mapping contributions for the graph classification task
	Selecting the important layer edges
	On the link prediction task
	On the graph classification task

	Selecting the important layer edges for link prediction
	Selecting the important layer edges for graph classification

	Obtain the important input edges
	On the node classification task
	On the link prediction task
	On the graph classification task
	Selecting the important input edges

	Experiments
	Datasets
	Basslines
	Experimental setup
	The predefined sparsity
	Performance evaluation and comparison

