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A APPENDIX

A.1 EVALUATION OF MESSAGE FLOWS ON DYNAMIC GRAPHS

In Figure [] we illustrate the computation of Fidelity for both dynamic and static graphs from the
perspective of computational graphs. The static graph G is considered an evolution of Gempty.
In the case of dynamic graphs, G; evolves from the G. After identifying the important message
flows, we adjust their weights to align with those in the destination graph, keeping the weights of
the remaining flows unchanged. This process generates a new computational graph G,,. In dynamic
graphs, adjusting the weights of selected important message flows may lead to differing weights
for the same-layer edges across various flows. However, GNN propagation rules require that edges
within each layer share a single weight. Thus, merging these flows while complying with GNN
propagation constraints is infeasible.

Gsource  Import message flows G, G destination
Gempty
New
. 0 0 A = 0.3 computational 0 03 Fidelity -
Stat;jc G + graph
grapns
0 o o A=04 o
€ @
Go
@ New
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graphs
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Figure 6: Calculation of Fidelity for dynamic and static graphs. Challenges may arise during the computation
for dynamic graphs.

A.2 CALCULATE THE CONTRIBUTION OF MESSAGE FLOWS
A.2.1 THE EXAMPLES ON THE NODE PREDICTION TASKS

Supposing the GNN models have two layers, considering the massage flow F = (V,I,J) €
the altered message flows set AJ, We have derived in detail the calculation process of the con-
tribution value of message flow:

C, aU Aht 19T 4 Aal h1 *=19T  the contribution of Ahy, h; to Az

= aIJ (Az? 1mAzT NY 1)0T the contribution of Az to Ahy

+Ad}(zp" 'm },T—lhl,T—l)eT the contribution of z; to h;
= a9l ART- 2mAhT 2077 1A, T 1 AR T 10T the contribution of Ahy to Az, (10
+ay; Thl = thbT—2AZ}"—1 mAz?_lAh?_ﬁ the contribution of hy, to Az
+ Aat; (h‘l/ZT_2mh%/,T—2z},T—1)mz}‘T—lh},T—laT the contribution of hy, to Az
According to the multiplier designed by the DeepLIFT, m ART2AzT =
Aayy o7 yMAZTIART - = %:j’mzf—lh?—l = h: i’mth 2T = a%/? T,
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therefore,

Abj ' op

_ T-1, 0Ty 1,T-2aT—1
C, =Aay; a;;hy” 770 1
Az

I

1,7—1 1,7—2 hi ™!
+ay; T Aajhyt T 6T (1)
I

Where the divide means the element-wise division, 7' = 2.

Similarly, Supposing the GNN models have three layers, considering the massage flow F =
(U,V,1,J) € the altered message flows set AJF, We have derived in detail the calculation pro-
cess of the contribution value of message flow:

C, = a?fAh’}_lOT + Adl;h;" 71T the contribution of Ahy, hy to Az
0,T

_ T-1 T .
=ay; (Azl mAz?thIT_l)B the contribution of Az to Ah;
+ AaITJ (Z}’Tﬁlmzl,T—lhl,T—l)aT the contribution of z; to hy
I I
0T A T—2 T S
=ay; Ahy, mAh‘T/szz?quleflAhIplO the contribution of Ahy, to Az
0,7y 1,7—2 T o
+a;; hy my1mo2 \, 7 mAZT—lAh?—le the contribution of hy to Az
T 1,T7-2 T . .
+ AaU(hV mh%/,T—2z},T—1)mz},T—lh},T—le the contribution of hy, to Az ;
0T ( 0T—2A1.T—39T—2 T-2,1,T—3pT—2 T
=ary (agy Oy 20T + Aagy"hy 0T T myg ey rimyro g1 0
the contribution of Ahy to Az
0,7 (v.T—3 T 12
+ CLIJ (hU mh}jT—Sz%;T—Zmz%/.T—zh%/,T—2)mh%/,T—zAz?—lmAz}“—lAh’f—le ( )
the contribution of hy; to Az
+ AQ?J (hg_gmhrlefzz%/,sz mZ%/,szh%/,sz)mh%/,szz},Tq mz},T—lh},T—l 0T
the contribution of hy to Az

T—2 T-1
— AT 240,71 O,Thl,TfSGT—zAhV eT—lAhI o7
= RAaygy ayp apy Dy

T—2 T—1
Az, Az
T-2 T-1
1,72 A T—1 0,T3.1,7—3 T —2 Ny r—1Ah; T
+ayy “Aayyap; hy 0 70 719
zy, Az
hT—2 hT— 1
1,7—2 1,T—1 A T 1.1, T-37—20y = 7110} T
+apy “ayp Aapshy 70 70 =79
ZV ZI

A.2.2 ON THE LINK PREDICTION TASK

According to the equation [3| for the target edge ey, the zF' € R'*? and z? € R'*4 are concate-
nated, and fed into a linear layer with the parameters @ p. According to the equation |7} we can
obtain the contribution of message flow Fv; v, ... vy, vy, to Az} or Az’ then the contribution of
message flow to the Az;; = z;7(G1) — 215(Go) is:

T—-1
_ 1,1 1,2 t+1 0,t+2 0,7
Cs = Z (“f[o]f[l]afmf[z] - 'Aaf[t]f[t+1]a}'[t-&-l],]—'[t-&-Q] © O Er_1), Fl
t=0
(13)
1,1 1,t t+1 T—1
LL0 hzy o hz Y Ahzig o Ahzip_y 0T9/LP>
Flo] 1,1 1,t t+1 T—-1
o Z G Az ) Azzip_y

Where OILP = OLP[O : d], difVT+1 = I, O/LP = GLp[d :], ifVT+1 =J
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A.2.3 ON THE GRAPH CLASSIFICATION TASK

Because the average pooling is used for the graph classification tasks, Az = z(G;) — z(Go) =
> e (vouvi) Az /Y U V|, thus the contribution is:

T—

Z ‘A o0t t2 0,7
]—'[O]]—'[l] ]-'[1]]-' a]—'[t]]—'[tJrl] Flt+1],F[t+2] " CF[T—1],F[T)
t=0
(14)
hl 1 hl t Aht+1 Ah —
1,0 H Ft] Flt+1] f[T 1] o1
bzt i o' AL orrt . v )/VoUVll
F[I] 27 Flt+1] ZFT-1)

Where, V and V; denote the the nodes set of graph G and (i1, respectively.

A.3 MAPPING CONTRIBUTIONS FOR THE GRAPH CLASSIFICATION TASK

In the section we show how to calculate the Shapley value, i.e. contribution %; - (F)
of layer edge aé—'[t—l] Fiy O AszT. Note that the changed layer edge can affect many nodes, not
the single node. Thus, in the graph classification task, the contribution matrix of [-th layer edge

t : l Vouvl|xe 1 _ BT
arp_11F[ € AAis® € R , the row vector ®: = ¢a}[t71]F[t] (F) denotes the contribu

tion of the I-th layer edge to Az’ , where the i-th node in the VO U V! is Fp. Let & = SAA gt
the ® also follows the summation-to-delta property Zlv Wi O, = Az =z(G1) — 2(Go)

A.4 SELECTING THE IMPORTANT LAYER EDGES
A.4.1 ON THE LINK PREDICTION TASK

For the link prediction, the z;;(G) = [Z1, ,20 2], Prig(G) =
[Pri(G), - ,Prg--- ,Pr.(G)], Let ® denotes the contribution matrix of layer edges, where
®; represents the contribution of [-th layer edge to Az;;, and ®,; ¢ indicates the contribution of I-th
layer edge to Az,, we can define the following objective function for the link prediction:

¢ [AA
x* = argmin Z —Pre(Gh) Z 21Dy
xe{0,1}1241 =1
Ix[[1=n
c [AA]
+ log > exp | z0(Go)+ Y wmi®re (15)
=1 =1

A.4.2 ON THE GRAPH CLASSIFICATION TASK
For the graph classification, the ®' denotes contribution matrix of the I[-th layer edge in
the ALA. The logits of the graph classification zg = [z1,---,24- - ,2.], the Pr(G) =

[Pri(G), -+ ,Pry--  Pro(G)]. because the SV UV ISAAI Gl — Az = Ag(Gh) — Az(Go),
the objective function for the graph classification task 1s:

c [VouV!||AA|

x* = argmin Z —Pry(G1) Z leq)é’g
i=1 =1

xE{O,l}‘A‘Al g=1

lIx|l1=n
|V°uvl\|A.A\
+ log Z exp Go) Z Z mlq) (16)
=1 =

A.5 SELECTING THE IMPORTANT LAYER EDGES FOR LINK PREDICTION

Selecting the important layer edges for link prediction task can be seen in Algorithm 2]

15



Under review as a conference paper at ICLR 2025

Algorithm 2 Selecting important layer edges to explain evolution of Pr(Y|Gy) to Pr(Y'|G1) on the
link prediction task

1: Input: the source graph Gy and the destination graph G, Pre-trained GNN parameters 6

Obtain the layer edges flow set AA

Initialize layer edges contribution matrix ® € RI4%¢ ag an all-zero matrix

Obtain the altered massage flows set AF

Given the target edge [J, AF = {F: F € AF and (F[T|=Ior F[T| = J)}

for s for 1 to |AF| do
Select the s-th message flow in |AF| and calculate C; according to the Eq.
Obtain the changed layer edges set A.Ax on this flow

9: for a}[tfl]f[t] in AAr do

10: According to the section and Eq. (22), calculate ¢, (F)
11: Let the index of a}[tfl]f[t] inAAisl, &; = ®; + %;[t_lmt] (F)
12:  end for

13: end for

14: Solve Eq. (I3) to obtain the important changed layer edges
15: Output: The important changed layer edges set

A.5.1 SELECTING THE IMPORTANT LAYER EDGES FOR GRAPH CLASSIFICATION

Selecting the important layer edges for graph classification task can be seen in Algorithm 3]

Algorithm 3 Selecting important layer edges to explain evolution of Pr(Y|Gy) to Pr(Y|G1) on the
graph classification tasks

—_

Input: the source graph G and the destination graph (1, Pre-trained GNN parameters 6

2: Obtain the layer edges flow set A.A
3: Initialize layer edges contribution matrix ®! € RIV'W'Ixe a5 an all-zero matrix
4: for s for 1 to |AF| do
5:  Select the s-th message flow in |[AJF| and calculate C according to the Eq.
6:  obtain the changed layer edges set AAx on this flow
7. for a}[tfl]fm in AAr do
. i i 29 .
8: According to the section and Eq. (22), calculate ¢, (F)
9: Let the index of a}[t_l]ﬂt] in AAis [. Let the index of F[T] in the VO U V! is i
. 1 _ &l
10: =P+ a0 (F)
11:  end for
12: end for
13: Solving the Eq. to obtain the important changed layer edges
14: Output: The important changed layer edges set

A.6 OBTAIN THE IMPORTANT INPUT EDGES

A.6.1 ON THE NODE CLASSIFICATION TASK

Let @ denotes the contribution matrix of edges, where ®; represents the contribution of /-th edge to
Azj, and ®; , indicates the contribution of [-th edge to Az, we can define the following objective
function for the node classification:

c |AE]
x* = arg min Z —Pri(G1) Z 1P 1,
xe{0,1}12¢1 =1
Ix[[1=n
c [Ag]
+ log Z exp Zk’(GO) + Z xlq)l,k’ a7
k=1 =1
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A.6.2 ON THE LINK PREDICTION TASK

For the link prediction, the z7;(G) = [Z1, - ,Z¢ - 2], Prrs(G) =
[Pri(G), -+ ,Prg--- ,Pro(G)], Let ® denotes the contribution matrix of edges, where @,
represents the contribution of I-th edge to Azy;, and ®; , indicates the contribution of [-th edge to
Azy, we can define the following objective function for the link prediction:

c |AE]
x* = argmin Z —Pre(Gh) Z 1Py
xe{0,1}14¢1 oy =1
lIx|l1=n
c |AE]
+ log Z exp | z¢(Go) + Z @y (18)
=1 =1

A.6.3 ON THE GRAPH CLASSIFICATION TASK
For the graph classification, the ®' denotes contribution matrix of the I-th layer edge in
the AA. The logits of the graph classification zg = [z1,---,24 - ,2), the Pr(G) =

Pri(G), -+ ,Prg--+ ,Pro(G)], because the 1V VIS Gl = Az = AZ(Gy) — Az(Go),
g i=1 =1 *i
the objective function for the graph classification task is:

c VOUV!||AE|
x* = argmin Z —Pry(Gy) Z lefbi»’g
xe{0,1}18A i=1  I=1
[Ix][1=n
¢ [VOUV||AE]
+ log > exp | zg(Go)+ Y. Y P, (19)
g'=1 i=1 =1

A.6.4 SELECTING THE IMPORTANT INPUT EDGES

Selecting the important input edges for node classification and link prediction can be seen in the
Algorithm The selection of important input edges for graph classification can be seen in the
Algorithm [5]

A.7 EXPERIMENTS
A.7.1 DATASETS

In the simulated dynamic graphs, we modify edge weights without adding or removing edges.
Specifically, given a changed ratio 7, we randomly adjust the the weights of |0 x 7 edges to
create evolving graphs. For the real dynamic graph datasets used in the node classification and link
prediction tasks, timestamps allow us to track graph evolution, which includes modifications to edge
weights, as well as the addition and deletion of edges. In graph classification, we apply slight per-
turbations to the graphs You et al.| (2018)), by randomly adding or removing edges or altering edge
weights.

* YelpChi, YelpNYC Rayana & Akoglu| (2015): each node represents a review, product, or user. If
a user posts a review to a product, there are edges between the user and the review, and between
the review and the product. The data sets are used for node classification.

* Pheme [Zubiaga et al.| (2017) and Weibo [Ma et al.| (2018): they are collected from Twitter and
Weibo. A social event is represented as a trace of information propagation. Each event has a label,
rumor or non-rumor. Consider the propagation tree of each event as a graph. The data sets are
used for node classification.

. BC-OTCﬂ and BC—Alph is a who trusts-whom network of bitcoin users trading on the platform.
The data sets are used for link prediction.

"http://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
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Algorithm 4 Selecting important input edges to explain evolution of Pr(Y|Gy) to Pr(Y'|G1) on the
node classification and link prediction tasks

2R

—

12:
13:
14:
15:
16:
17:
18:

19:

TYRIaw

Input: the source graph G and the destination graph (i1, Pre-trained GNN parameters 6
Obtain the changed edges set AE = {apy : alyy, # alyy,t € {1,..., T}, U,V € VOUV}
Initialize layer edges contribution matrix ® € RI*€1%¢ as an all-zero matrix

Obtain the altered massage flows set AF = {F : F = (F[0],...,F[t]... F[T]), ag_lftf”ﬂt] #

azy yrpet =1 T}
if The node classification task then
Given the target node J, AF = {F : F € AF and F[T| = J}
else if The link prediction task then
Given the target edge IJ, AF = {F : F € AF and (F[T| =TI or F[T] = J)}
end if
for 7 in |AF| do
According to the Eq. (node classification) or Eq. (link prediction), calculate the
message flow contribution ¢
obtain the changed edges set AEx = {azy_1]7)) : “Of[tq]}'[t] £ alf[tq]}‘[t]} on this flow
for AF[t—1]F[t] in AS}‘ do
According to the Section and Eq. (??), calculate ¢q .\, _, -, (F).
Let the azp;1)7(y is the I-th edge in AE, ®; = @1 + dar, 4 71y (F)
end for
end for
Solving the Eq. (node classification) or Eq. (link prediction) to obtain the important
changed input edges
Output: The important changed input edges set

Algorithm 5 Selecting the important input edges to explain evolution of Pr(Y|Gy) to Pr(Y|G1) on
the graph classification tasks

1:
2:
3:

11:
12:

13:
14:

15
16

R A

Input: the source graph G and the destination graph (i1, Pre-trained GNN parameters 6
Obtain the layer edges flow set AA = {al,, : at, # aji t € {1,..., T}, U,V € VOUV'}

Obtain the altered massage flows set AF = {F : F = (F[0],...,F[t] ... F[T)), a%tfl]}.m #
L t=1,...,T}
Cri—1F) AR
for [ for 1 to |AA| do
Initialize layer edges contribution matrix ®' € RIY"YV' %€ a5 an all-zero matrix
end for
for F in |AF| do
According to the Eq. (I4), calculate the message flow contribution ¢
obtain the changed edges set AEx = {aFy_1]7[ : ao}'[t—l]}'[t] #+ al}-[t_l]]_-[t]} on this flow

for a}[tfl]ﬂt] in AEx do
i i 29 .
According to the section and Eq. (22), calculate ¢, (F)
Let the a}[t_l]ﬂt] is the [-th layer edge in AE, F[T] is the i-th node in the V' U V1,
I _ &l
(I)i - q)i + ¢a’f7—'[t—1]}'[t] (]:)
end for
end for
Solving the Eq. to obtain the important changed input edges

Output: The important changed input edges set

18
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. UC]ﬂ is an online community of students from the University of California, Irvine, where in the
links of this social network indicate sent messages between users. The data sets are used for link
prediction.

* MUTAG Debnath et al| (1991): A molecule is represented as a graph of atoms where an edge
represents two bounding atoms.

* ClinTox |Gayvert et al.| (2016):compares drugs approved through FDA and drugs eliminated due
to the toxicity during clinical trials.

* IMDB-BINARY is movie collaboration datasets. Each graph corresponds to an ego-network for
each actor/actress, where nodes correspond to actors/actresses and an edge is drawn betwen two
actors/actresses if they appear in the same movie.Each graph is derived from a pre-specified genre
of movies, and the task is to classify the genre graph it is derived from.

* REDDIT-BINARY is balanced datasets whereeach graph corresponds to an online discussion
thread and nodes correspond to users. An edge was drawn between two nodes if at least one
of them responded to another’s comment. The task is to classify each graph to a community or a
subreddit it belongs to.

Table 2: The details of datasets

Datasets | Nodes(Avg. Nodes) | Edges(Avg. Edges) | task

YelpChi 105,659 375,239 node classification
YelpNYC 520,200 1,956,408 node classification
weibo 4,657 _ node classification
pheme 5,748 - node classification

BC-OTC 5,881 35,588 link prediction

BC-Alpha 3,777 24,173 link prediction

ucCI 1,899 59,835 link prediction
MUTAG 17.93 19.79 graph classification
ClinTox 26.1 55.5 graph classification
IMDB-BINARY 19.8 193.1 graph classification
REDDIT-BINARY 429.6 995.5 graph classification

Table 3: The changed ration 7 on different datasets

YelpChi Pheme

YelpNYC ‘ Weibo

BC-OTC ‘ BC-Alpha

UCI ‘ MUTAG ‘ ClinTox

IMDB- REDDIT-
BINARY BINARY

ot ] 1 |t ] 05 | 06 o4 | 1 | 1 |1 | 1

A.7.2 BASSLINES

* GNNEXxplainer is designed to explain GNN predictions for node and graph classification on static
graphs. We train the explainer on graphs G and G to obtain the edges contribution ®° and ®!.
The final edges contribution is given by ® = ®! — &Y if the predicted class on G and G are
different. Otherwise, ® = ®'. The top-K edges are selected based on ® as the explanations.

* PGExplainer learns approximated discrete masks for edges to explain the predictions, with im-
portant edges selected in the same manner as GNNExplainer.

* GNN-LREP utilizes the back-propagation attribution method LRP to GNN |Schnake et al.| (2020),
attributing the class probability Pr(Y = k|G1) to input neurons regardless of Pr(Y'|Gy), thereby
obtaining contribution scores for message flows. It uses a summation function to map these con-
tributions to edges, with edge selection consistent with GNNExplainer.

* DeepLIFT [Shrikumar et al.| (2017) attributes the log-odd between two probabilities Pr(Y =
k|Go) and Pr(Y = k'|G1), where k # K/, to the message flows. Then it uses a summation
function to obtain contributions of edges. The edge selection process is consistent with GNNEx-
plainer.

*http://konect.cc/networks/opsahl-ucsocial
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* FlowX applies the Shapley value to derive initial contributions of message flows, subsequently
training these scores by defining loss functions. A summation function is employed to map con-
tributions to edges, with edge selection aligned with GNNExplainer.

A.7.3 EXPERIMENTAL SETUP

We trained the two layers GNN. utilizing element-wise sum as the aggregation function fagq.
The logit for node J is denoted by z;(G). For node classification, z;(G) is mapped to the class
distribution through the softmax function. For the link prediction, we concatenate z;(G) and z;(G)
as the input to a linear layer to obtain the logits, which are then mapped to the probability of the
existence of the edge (I, J). For the graph classification task, the average pooling of z;(G) across
all nodes in G can produce a single vector representation z(G) for classification. It can be mapped to
the class probability distribution through the softmax function. During training, we set the learning
rate to 0.01, the dropout rate to 0.2 and the hidden size to 16. The model is trained and then fixed
during the prediction and explanation stages.

A.7.4 THE PREDEFINED SPARSITY
On the real dynamic graphs, the sparsity of explanations across various datasets and tasks is illus-

trated in Table [ The sparsity of simulated dynamic graphs is illustrated in Table [5] The sparsity
is small, but our method can also achieve the better performance than the baselines.

Table 4: The sparsity of explanations on real dynamic graph datasets

Datasets | Sparsity level 1 | Sparsity level 2 | Sparsity level 3 | Sparsity level 4 | Sparsity level 5
YelpChi 0.996 0.992 0.988 0.994 0.98
YelpNYC 0.998 0.997 0.996 0.995 0.994
weibo 0.996 0.993 0.99 0.986 0.982
pheme 0.98 0.96 0.94 0.92 0.9
BC-OTC 0.996 0.995 0.994 0.993 0.992
BC-Alpha 0.995 0.994 0.993 0.992 0.991
UCI 0.998 0.997 0.996 0.994 0.992
MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.991 0.982 0.973 0.964 0.954
IMDB-BINARY 0.996 0.991 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.997 0.996 0.995 0.994

Table 5: The sparsity of explanations on different simulated graph datasets

Datasets | Sparsity level 1 | Sparsity level 2 | Sparsity level 3 | Sparsity level 4 | Sparsity level 5
YelpChi 0.999 0.998 0.997 0.996 0.995
YelpNYC 0.9994 0.9988 0.9981 0.9975 0.9965
weibo 0.9972 0.9945 0.992 0.989 0.986
pheme 0.982 0.963 0.945 0.927 0.908
BC-OTC 0.967 0.95 0.935 0.918 0.9
BC-Alpha 0.95 0.91 0.87 0.83 0.79
UCI 0.999 0.998 0.997 0.996 0.995
MUTAG 0.988 0.976 0.964 0.952 0.94
ClinTox 0.99 0.98 0.97 0.96 0.95
IMDB-BINARY 0.996 0.992 0.988 0.984 0.98
REDDIT-BINARY 0.998 0.996 0.994 0.992 0.99

A.7.5 PERFORMANCE EVALUATION AND COMPARISON

We compare the performance of the methods across three tasks: node classification, link predic-
tion and graph classification in simulate dynamic graph scene, as illustrated in Figure For
each dataset, we report the average KL over target nodes/edges/graphs. From Figure [/} we can see
that our method AxiomLayeredge has the smallest KL across all levels of explanation sparsity and
datasets and tasks, with exception of Weibo, Pheme and certain sparsity levels of YelpNYC dataset.
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Figure 7: Performance in KL as Go — G1. Each column corresponds to a different dataset. The first, second
and third rows represent node classification, link prediction and graph classification tasks, respectively.

In datasets with dense graph structures (YelpChi, YelpNYC, BC-Alpha, BC-OTC, UCI, IMDB-
BINARYdand REDDIT-BINAYR), the AxiomLayeredge-TopK method ranks third. This indicates
that our designed message flow contribution value Algorithm can effectively explain the dynamic
graphs. In seven experimental settings (Weibo, YelpChi, YelpNYC, BC-Alpha, UCI, MUTAG,
ClinTox), our method AxiomLayeredge along with its variants AxiomEdge, AxiomEdge\Shapley,
AxiomLayeredge\Shapley outperform the GNNLRP, DeepLIFT, GNNExplainer, PGExplainer and
FlowX methods. This demonstrates that our proposed methods more effectively explain the evolu-
tion of Pr(Y|Gy; 0) to Pr(Y|G1; 0), while methods designed for static graph struggle to identify
salient edges that explain changes in the predicted probability distribution.
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