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A EXPERIMENTAL SETTINGS

A.1 IMPLEMENTATION DETAILS

We implement Lotus based on Stable Diffusion V2 (Rombach et al., 2022), with text conditioning
disabled. During training, we fix the time-step t = 1000. To optimize the model, we utilize the
standard Adam optimizer with the learning rate 3 × 10−5. All experiments are conducted on 8
NVIDIA A800 GPUs and the total batch size is 128. For our discriminative variant, we train for
4,000 steps, which takes ∼8.1 hours, while for the generative variant, we extend training to 10,000
steps, requiring ∼20.3 hours.

A.2 EVALUATION DATASETS AND METRICS

Evaluation Datasets. ① For affine-invariant depth estimation, we evaluate on 4 real-world datasets
that are not seen during training: NYUv2 (Silberman et al., 2012) and ScanNet (Dai et al., 2017)
all contain images of indoor scenes; KITTI (Geiger et al., 2013) contains various outdoor scenes;
ETH3D (Schops et al., 2017), a high-resolution dataset, containing both indoor and outdoor scenes.
② For surface normal prediction, we employ 4 datasets for evaluation: NYUv2 (Silberman et al.,
2012), ScanNet (Dai et al., 2017), and iBims-1 (Koch et al., 2018) contain real indoor scenes; Sin-
tel (Butler et al., 2012) contains highly dynamic outdoor scenes.

Metrics. ① For affine-invariant depth, we follow the evaluation protocol from (Ranftl et al., 2020;
Ke et al., 2024; Yang et al., 2024a;b), aligning the estimated depth predictions with available ground
truths using least-squares fitting. The accuracy of the aligned predictions is assessed using the
absolute mean relative error (AbsRel), i.e., 1

M

∑M
i=1 |ai − di|/di, where M is the total number of

pixels, ai is the predicted depth map and di represents the ground truth. We also report δ1 and δ2,
the proportion of pixels satisfying Max(ai/di, di/ai) < 1.25 and < 1.252 respectively.

② For surface normal, following (Bae & Davison, 2024; Ye et al., 2024), we evaluate the predictions
of Lotus by measuring the mean angular error for pixels with available ground truth. Additionally,
we report the percentage of pixels with an angular error below 11.25◦ and 30◦.

For all tasks, we report the Avg. Rank, which indicates the average ranking of each method across
various datasets and evaluation metrics. A lower value signifies better overall performance.

B DETAILS OF DIRECT ADAPTION

As illustrated in Fig. 4 of the main paper, our Direct Adaption means directly adapting the standard
diffusion formulation for image generation into dense prediction task with minimal modifications.
Specifically, starting with the pre-trained Stable Diffusion model, image x and annotation y are en-
coded using the pre-trained VAE encoder. Noise is added to the encoded annotation to obtain the
noisy annotation zyt at noise level t ∈ [1, T ]. The encoded image zx is then concatenated with the
noisy annotation zyt to form the input of the denoiser U-Net model. To handle this concatenated
input, the U-Net input layer is duplicated (from 4 channels to 8 channels) and its original weights
are halved as initialization, which prevents activation inflation (Ke et al., 2024). Direct Adaptation is
a standard multi-step formulation and optimized using the standard diffusion objective, ϵ-prediction,
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Table A: Experiments based on Marigold w/ AMRN.

Index Method NYUv2 KITTI
AbsRel↓ δ1↑ AbsRel↓ δ1↑

1-1 ϵ-pred. 6.746 95.021 11.827 87.065
1-2 ϵ-pred. + single step 6.691 94.552 13.395 76.269
1-3 ϵ-pred. + single step + detail preserver 6.547 94.772 12.815 77.829

2-1 v-pred. 6.358 95.188 10.796 89.726
2-2 v-pred. + single step 5.499 96.415 11.132 88.520
2-3 v-pred. + single step + detail preserver 5.422 96.517 10.761 89.826

3-1 x0-pred. 6.262 95.501 10.769 89.643
3-2 x0-pred. + single step 5.495 96.431 11.237 88.457
3-3 x0-pred. + single step + detail preserver 5.418 96.542 10.651 89.887

Table B: Experiments based on Marigold w/o AMRN.

Index Method NYUv2 KITTI
AbsRel↓ δ1↑ AbsRel↓ δ1↑

1-1 ϵ-pred. 13.110 85.083 17.655 75.581
1-2 ϵ-pred. + single step 6.605 94.583 13.406 76.298
1-3 ϵ-pred. + single step + detail preserver 6.582 94.768 12.823 77.983

2-1 v-pred. 10.634 89.448 14.328 84.026
2-2 v-pred. + single step 5.498 96.562 11.173 88.314
2-3 v-pred. + single step + detail preserver 5.459 96.657 10.814 89.081

3-1 x0-pred. 8.058 92.834 12.177 86.301
3-2 x0-pred. + single step 5.477 96.615 11.166 88.640
3-3 x0-pred. + single step + detail preserver 5.396 96.717 10.575 89.804

as described in Eq. 2 of the main paper. To analyze the original diffusion formulation more effec-
tively, we avoid specialized techniques introduced in prior methods (Ke et al., 2024; Fu et al., 2024;
Xu et al., 2024; Ye et al., 2024), such as annealed multi-resolution noise (AMRN).

The AMRN strategy aims to reduce the model’s variance, which has a similar effect to our design,
x0-pred., but through a different solution. This diminishes the impact of our method. Therefore,
it is preferable to validate the effect of our designs w/o AMRN. We validate this claim using the
Marigold codebase, both w/ and w/o AMRN, as shown in the Tab. A and Tab. B, respectively.
In Tab. B, the performance of multi-step models follows the order: ϵ-pred. < v-pred. < x0-pred.
However, in Tab. A, the differences between three parameterization types are minimal, particularly
the performance of v-pred. and x0-pred. are nearly identical. This can be attributed to the influ-
ence of AMRN, which is specifically designed for multi-step diffusion models to reduce variance
and enhance performance. As a result, x0-pred. shows no significant difference in reducing variance
compared to the other two parameterizations. In Tab. B, when the number of time-steps is reduced to
one, the performance of the model improves regardless of the parameterization type used. However,
in Tab. A, the effect of single-step is unstable. This unexpected phenomenon arises from the com-
plex, multifaceted effects of AMRN when transitioning from multi-step to single-step: ① AMRN
significantly improves the multi-step model, but its effect is lost when the number of time-steps is re-
duced to one. ② In the single-step model, convergence is easier with limited data, leading to a slight
improvement in performance. However, this also leads to catastrophic forgetting, which reduces the
model’s ability to handle detailed areas, especially on the KITTI dataset. In both Tab. A and Tab. B,
Detail Preserver further enhances the performance of single-step model, particularly on the KITTI
dataset, which contains more complex and detailed areas, such as pedestrians and fences, compared
to the NYUv2 dataset. In both Tab. A and Tab. B, when using a single step (t = T ), according to
vt =

√
ᾱT ϵ −

√
1− ᾱT z, since

√
ᾱT ≈ 0 when t = T , v-pred. becomes equivalent to x0-pred.

This explains why the performances of v-pred. and x0-pred. are nearly identical in single-step,
with only minor differences. In conclusion, these experiments show that AMRN, which has a sim-
ilar effect to our designs but is achieved through a different solution, diminishing the impact of our
proposed designs. Therefore, it is preferable to validate the effect of our designs w/o AMRN. The
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experiments on Marigold w/o AMRN (Tab. B) validate the effectiveness of our proposed designs,
as stated in our main paper, where the best protocol is x0-pred. + single step + detail preserver.

C ANALYSIS OF “DIRECTION(zyτ )” IN DDIM PROCESS (EQ. 4)

In addition to the predicted clean sample ẑyτ , Eq. 4 of the main paper includes another term,
“direction(zyτ )”. It is calculated according to different parameterization types:

ϵ-prediction: d = wτ · f ϵ
θ

x0-prediction: d = wτ · [ 1√
1− ατ

(zyτ −
√
ατf

z
θ)]

(A)

where d represents the term “direction(zyτ )”, wτ =
√
1− ατ−1 is the weight at denoising step τ .

And f ϵ
θ and f z

θ denote the model outputs for different parameterizations. For clarity, the input of
the model fθ is omitted. As shown in Eq. A, for x0-prediction, when τ → 1, i.e., at the end of
the denoising process, the factor

√
1− ατ → 0, which may amplify variance from f z

θ . However,
its influence is limited. The reasons are as follows: ① The rate of change of

√
1− ατ from T to

1 is initially slow and then accelerates. As a result, the factor remains close to 1 for most of the
denoising process, only close to 0 in the final steps. ② In x0-prediction, compared to the initial
denoising steps, the gap between network output fz

θ and zyτ in the final steps is much weaker and
gradually approaching zero. With

√
ατ → 1 as τ → 1, we can get zyτ −

√
ατf

z
θ → 0, which may

also indicate the limited influence of factor
√
1− ατ .
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Figure A: Quantitative evaluation of the pre-
dicted depth maps ẑyτ along the denoising pro-
cess. The experimental settings are same as Fig. 5
and 6. Six steps are selected for illustration. The
banded regions around each line indicate the vari-
ance, wider areas representing larger variance.

In sec. 4.1, we discussed two basic parameter-
ization types: ϵ-prediction and x0-prediction.
The latest parameterization, v-prediction (Sal-
imans & Ho, 2022), combines these two ba-
sic parameterizations to avoid the invalid pre-
diction values of ϵ-prediction at some time-
steps for progressive distillation. Specifically,
the U-Net denoiser model fθ learns to predict
the combination of added noise ϵ and the clean
sample zy: v =

√
ατ ϵ −

√
1− ατz

y, where√
ατ

2
+

√
1− ατ

2
= 1. During inference,

according to the Eq. 4 of main paper, the pre-
diction ẑyτ =

√
ατz

y
τ −

√
1− ατf

v
θ , where f v

θ
represents the predicted combination, striking
a balance between ϵ (ϵ-prediction) and zy (x0-
prediction). As shown in Fig. A, we conduct
experiments based on the settings in Fig. 5 and
6 of the main paper. The results indicate that
the performance of v-prediction falls between that of x0-prediction and ϵ-prediction, with moderate
variance. However, for dense prediction tasks, minimizing variance is crucial to avoid unstable pre-
diction. Therefore, v-prediction may not be the optimal choice. In contrast, x0-prediction achieves
the best performance with the lowest variance, which is why we replace the standard ϵ-prediction
with the more suitable x0-prediction.

E EXPERIMENTS ON MORE DENSE PREDICTION TASKS:
SEMANTIC SEGMENTATION AND DIFFUSE REFLECTANCE

To validate the generalization ability of our method on other dense prediction tasks, we further
train it on semantic segmentation and diffuse reflectance prediction. Both tasks are trained using
the training set of the Hypersim dataset (Roberts et al., 2021) and evaluated on their corresponding
test sets. For semantic segmentation, we report the mean intersection over union (mIoU) and mean
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Input Image Ground Truth Prediction

(a) Semantic Segmentation

Ground Truth Prediction

(b) Diffuse Reflectance

Figure B: Experiments of Lotus on (a) semantic segmentation and (b) diffuse reflectance. The
high-quality results indicate that our method, even without task-specific designs, can be effectively
applied not only to geometric dense prediction tasks, but also to semantic dense prediction tasks.

Table C: The quantitative results of seman-
tic segmentation on Hypersim (Roberts et al.,
2021) testing set. Mean values are reported
from 10 independent runs.

Method mIoU ↑ mAcc ↑
Direct Adaption 14.1 61.3
Lotus-G 21.2 65.6

Table D: The quantitative results of diffuse
reflectance prediction on Hypersim (Roberts
et al., 2021) testing set. Mean values are re-
ported from 10 independent runs.

Method L1 ↓ L2 ↓
Direct Adaption 0.198 0.206
Lotus-G 0.109 0.135

accuracy (mAcc). For diffuse reflectance prediction, we evaluate using the L1 and L2 distances to
the ground truth. To enable fast evaluation, we randomly select 500 paired testing samples. In our
experiments, we do not redesign any specific modules or loss functions for these tasks and maintain
the original training protocol of Lotus unchanged. As shown in Tab. C and Tab. D, we compare our
method with the baseline, Direct Adaption (Fig. 4 in the main paper), to assess its effectiveness.
The results show that our method outperforms the baseline across all metrics. Additionally, we
provide qualitative visualizations for these two tasks in Fig. B, demonstrating accurate and high-
quality results. Both the quantitative and qualitative results indicate that our method, even without
task-specific designs, can be effectively applied not only to geometric dense prediction tasks, as
shown in the main paper, but also to semantic dense prediction tasks.

F FREQUENCY DOMAIN ANALYSIS OF THE DETAIL PRESERVER
TAKE MONOCULAR DEPTH ESTIMATION AS AN EXAMPLE

We use fast Fourier transform (FFT) to compute the Discrete Fourier Transform (DFT) of the input
images and depth map estimations with and without Detail Preserver. The entire 2D frequency
domains are divided into 8 frequency groups exponentially using the base of 2, i.e., the first group
covers the 2D frequency map in a circle with a radius of 2, the second group covers the annular region
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with radii from 2 to 4, the third group covers radii from 4 to 8, and so on. This exponential grouping
allows us to analyze the frequency components across progressively larger ranges, capturing both
low-frequency and high-frequency characteristics.

(a) Frequency domain energy distribution compar-
isons among input image, and depth estimations w/
and w/o Detail Preserver.

(b) Frequency energy ratio between input image and
GT depth.

(c) Frequency energy ratio between input image and
depth estimations w/ Detail Preserver.

(d) Frequency energy ratio between the input image
and depth estimations w/o Detail Preserver.

Figure C: Frequency Domain Analysis of the Detail Preserver We use Hypersim (Roberts et al.,
2021) dataset to transfer the input image and depth estimation w/ and w/o Detail Preserver into 2D
frequency domains, using FFT. 100 pairs of {input image, depth estimation w/ Detail Preserver,
depth estimation w/o Detail Preserver} are randomly selected for this frequency domain analysis.
Hypersim is a photorealistic synthetic dataset. Not only can Hypersim offer dense GT labels without
None areas (which is important during FFT), its depth annotations are much fine-grained compared
with real-world datasets like NYUv2 (Silberman et al., 2012) and KITTI Geiger et al. (2013).

In order to more clearly demonstrate the effect of our proposed Detail Preserver, we first analysis
the experiments using Hypersim (Roberts et al., 2021) dataset to display the difference in frequency
domain energy between the details from both geometry and texture (the input images); and the
details from purely the geometry (the GT depth maps). As shown in Fig. Cb, the frequency domain
energy between the input images and the depth annotations are plotted. Clearly we can see that the
input images has much higher frequency energy in high-frequency areas, i.e., group 4, 5, 6, and 7,
indicating that the details in surface textures mainly contribute to high-frequency energy; while the
details in geometries, which can be expressed by depth maps, are mainly concentrated into (relative)
middle and low frequency areas, i.e., group 0, 1, 2, and 3.

As shown in Fig. Ca , collaborating with the Detail Preserver effectively drag the frequency domain
energy of depth estimation to the input image, especially on middle and low frequency domains,
i.e., the frequency group 0, 1, 2 and 3, highlighting the Detail Preserver’s effectiveness in enhancing
the geometrical details that should be reflected into depth predictions, like the fences around roads
and houses (Fig. 8 of our main paper).While for high-frequency components, i.e., the frequency
group 4, 5, 6, and 7, which may be primarily caused by the highly detailed textures, like the signs
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on the road and patterns on house surfaces, the energy in these areas between depth estimations with
and without Detail Preserver is quite similar, indicating that the Detail Preserver does not copy this
high-frequency and geometry-independent texture.

By comparing Fig. Cb, Cc and Cd together, we can see that Detail Preserver effectively enhances the
details of geometries. This insight is evident by this phenomenon: the frequency domain energy ratio
between input and depth estimation w/ Detail Preserver, is closer to the frequency domain energy
ratio between input and GT depth, compared with the frequency domain energy ratio between input
and depth estimation w/o Detail Preserver.

G THE EFFECT OF DIFFERENT TIME-STEPS t IN ONE-STEP DIFFUSION

In Sec. 4.2 of our main paper, we reduce the number of training time-steps of diffusion formulation
to only one, and fixing the only time-step t to T following the diffusion formulation. In this section,
we evaluate the effect of different time-steps t in one-step diffusion, rather than exclusively fixing
t = T , to validate that the rule of basic diffusion formulations should better be followed. Violating
it will lead to performance degradation. As shown in Tab. E, we conduct experiments on Hypersim
dataset (Roberts et al., 2021) and evaluated on NYUv2 dataset (Silberman et al., 2012), without em-
ploying the detail preserver or mixture dataset training. The results indicate that the model performs
best when t = T (t = 1000). Changing t leads to a slight degradation in performance.

Table E: The effect of different time-steps t in one-step diffusion. In this experiment, the models
are trained on Hypersim dataset (Roberts et al., 2021) and evaluated on NYUv2 dataset (Silberman
et al., 2012), without employing the detail preserver or mixture dataset training.

Time-step t = 1000 t = 750 t = 500 t = 250 t = 1

AbsRel ↓ 5.587 5.631 5.727 5.663 5.737
δ1 ↑ 96.272 96.165 96.087 96.141 96.080

H QUALITATIVE COMPARISONS

In Fig. D, we further compare the performance of our Lotus with other methods in detailed areas.
The quantitative results obviously demonstrate that our method can produce much finer and more ac-
curate depth predictions, particularly in complex regions with intricate structures, which sometimes
cannot be reflected by the metrics. Also, as illustrated in Fig. E, Lotus consistently provides accu-
rate surface normal predictions, effectively handling complex geometries and diverse environments,
highlighting its robustness on fine-grained prediction.

I APPLICATIONS OF LOTUS

Thanks to its superiority, Lotus can seamlessly support a variety of applications. Fig. F illustrates
four key applications: ① Depth to Point Cloud. The depth maps estimated by Lotus are projected
into 3D point clouds; ② Joint Estimation. By incorporating a task switcher, Lotus can perform
multiple tasks simultaneously, such as joint depth and normal map estimation with 100% shared
network parameters; ③ Single-View Reconstruction. Using Lotus’s normal predictions, high-quality
meshes can be reconstructed through through Bilateral Normal Integration (Cao et al., 2022); ④
Multi-View Reconstruction. Leveraging per-view depth and normal predictions from Lotus, high-
quality meshes can be reconstructed with MonoSDF (Yu et al., 2022), without RGB supervision,
showcasing Lotus’s robustness and accurate spatial understanding. These applications emphasize
the importance of Lotus in the field of computer vision. Its accuracy and efficiency will help in
addressing increasingly complex problems.

J FUTURE WORK

While we have applied Lotus to two geometric dense prediction tasks, it can be seamlessly adapted
to other dense prediction tasks requiring per-pixel alignment with great potential, such as panoramic
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Figure D: Qualitative comparison on zero-shot affine-invariant depth estimation. Lotus demon-
strates higher accuracy especially in detailed areas.

segmentation and image matting. Additionally, our performance is slightly behind DepthAny-
thing (Yang et al., 2024a) which utilizes large-scale training data. In the future, scaling up the
training data, as reveal in Fig. 7 and Tab. 3 (“Mixture Dataset”) of the main paper, has great poten-
tial to further enhance Lotus’s performance.
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Figure E: Qualitative comparison on zero-shot surface normal estimation. Lotus offers improved
accuracy particularly in complex regions.
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Figure F: Applications of Lotus. ① Depth to 3D Point Clouds. ② Joint Estimation: Simultaneous
depth and normal estimation with 100% shared parameters. ③ Single-View Reconstruction: Re-
constructing 3D meshes from normal predictions. ④ Multi-View Reconstruction: Reconstructing
high-quality meshes using depth/normal predictions without RGB supervision.
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