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A APPENDIX

A.1 PRELIMINARIES

Latent Diffusion Models. Latent Diffusion Models (LDMs), introduced by Rombach et al.
(2022), represent a significant advancement in generative modeling by conducting diffusion and
denoising processes within a compressed latent space rather than directly in the high-dimensional
image space. This approach substantially reduces computational complexity while maintaining the
quality of generated images.

Specifically, a pre-trained Variational Autoencoder (VAE) Kingma & Welling (2013) is employed
to encode input images into lower-dimensional latent representations. Given an input image I, the
encoder E(·) maps it to a latent vector: z0 = E(I). A forward stochastic diffusion process Sohl-
Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020) is then applied to the latent vector z0,
adding Gaussian noise over T time steps to produce a sequence of noisy latent variables {zt}Tt=1.
The process is defined by: zt =

√
ᾱt z0+

√
1− ᾱt ϵ, ϵ ∼ N (0, I), where t ∈ {1, 2, . . . , T} denotes

the diffusion steps, αt = 1 − βt with βt ∈ (0, 1) being the variance schedule, and ᾱt =
∏t

s=1 αs

is the cumulative product of αt. As t approaches T , the distribution of zT converges to a standard
normal distribution N (0, I) due to the accumulated noise.

The reverse diffusion process aims to reconstruct the original latent vector z0 by sequentially de-
noising zT . At each timestep t, a noise prediction network ϵθ, typically parameterized using a U-Net
architecture Ronneberger et al. (2015), estimates the noise component in zt using optional condi-
tioning information c. The network is trained to minimize the expected mean squared error between
the true noise ϵ and the predicted noise ϵθ: L = Ez0,c,ϵ,t

[
ω(t) ∥ϵ− ϵθ(zt, t, c)∥22

]
, where ω(t) is

a weighting function that balances the loss contribution across different timesteps.

Once trained, the model can generate new samples by starting from a random Gaussian
latent vector zT ∼ N (0, I) and iteratively applying the denoising process: zt−1 =
1√
αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt, t, c)

)
+ σt n,n ∼ N (0, I), for t = T, T − 1, . . . , 1, where σt is the stan-

dard deviation of the noise added at step t. The final latent vector z0 is then decoded to reconstruct
the image: I = D(z0), where D(·) is the decoder of the Variational Autoencoder (VAE).

Incorporating Motion Conditions via Cross-Attention. Incorporating conditioning informa-
tion is crucial for controlling the generative process in latent diffusion models. Cross-attention
mechanisms Vaswani (2017) are employed to effectively integrate motion conditions into the
model. The attention layers process both the noisy latent variables zt and the embedded mo-
tion conditions c to guide the denoising process. The cross-attention operation is formulated as:
CrossAttn(zt, c) = softmax

(
QK⊤/

√
dk

)
V, where Q = WQzt, K = WKc and V = WV c are

the queries; WQ, WK , and WV are learnable projection matrices; and dk is the dimensionality
of the keys. The softmax function ensures that the attention weights sum to one, focusing on the
most relevant components of the conditioning information. By integrating cross-attention into the
denoising network, the model dynamically adjusts its focus based on the current latent state and the
provided conditions. This mechanism enables the generation of images that are coherent with the
conditioning inputs, enhancing the expressiveness and realism of the animated portraits.

In our work, the motion conditions c include the reference image embedding cimage, audio fea-
tures caudio, and textual embeddings ctext obtained via Contrastive Language-Image Pretraining
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Figure 1: Qualitative comparison with exited approaches on CelebV data-set.

Method FID↓ FVD↓ Sync-C↑ Sync-D↓ E-FID↓
Audio2Head 57.879 495.421 7.069 7.916 60.538

SadTalker 41.852 588.173 7.026 7.931 21.806
EchoMimic 60.252 805.067 5.499 9.482 19.680
AniPortrait 49.626 583.709 3.810 10.930 22.220

Hallo 82.715 1088.158 6.683 8.420 15.616
Ours 37.944 477.412 6.928 8.307 14.682

Real video - - 7.109 7.938 -

Table 1: The quantitative comparisons with existed portrait image animation approaches on the
CelebV data-set.

(CLIP) Radford et al. (2021). The combination of these modalities allows for nuanced control over
facial expressions, lip movements, and head poses in the generated animations.

A.2 TRAINING AND INFERENCE

Training. This study implements a two-stage training process aimed at optimizing distinct compo-
nents of the overall framework.

In the initial stage, the model is trained to generate video frames using a reference image, input-
driven audio, and a target video frame. During this phase, the parameters of the Variational Au-
toencoder (VAE) encoder and decoder, as well as those of the facial image encoder, are held con-
stant. The optimization process focuses on the spatial cross-attention modules within both the Ref-
erenceNet and the denoising U-Net, with the objective of enhancing the model’s capabilities for
portrait video generation. Specifically, a random image is selected from the input video clip to
serve as the reference image, while adjacent frames are designated as target images for training pur-
poses. Additionally, motion modules are introduced to improve the model’s temporal coherence and
smoothness.

In the second stage, patch drop and Gaussian noise augmentation techniques are applied to the mo-
tion frames to train the model for generating long-duration videos characterized by temporal coher-
ence and smooth transitions. This stage refines the modeling of temporal dynamics by incorporating
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Figure 2: Portrait image animation results given different portrait styles.

corrupted motion frames into the conditioning set, thereby enhancing the model’s ability to capture
motion continuity over extended sequences. Concurrently, textual prompts are utilized at this stage
to facilitate precise modulation of facial expressions and motions based on textual instructions. For
the super-resolution model, the parameters of the VAE encoder are optimized, with a focus on re-
fining the weights responsible for codebook prediction. Temporal alignment is employed within
the Transformer-based architecture to ensure consistency and high-quality outputs across frames,
thereby enhancing temporal coherence in high-resolution details.

Inference. During inference, the video generation network receives a single reference image, driv-
ing audio, an optional textual prompt, and motion frames augmented using patch dropping and
Gaussian noise techniques as inputs. The network generates a video sequence that animates the
reference image in accordance with the provided audio and textual prompt, synthesizing realistic lip
movements and expressions synchronized with the audio output. Subsequently, the high-resolution
enhancement module processes the generated video to produce high-resolution frames, thereby en-
hancing visual quality and fine facial details.

A.3 EXPERIMENTAL SETUPS

Datasets. To evaluate our proposed method, we employed several publicly available datasets, in-
cluding HDTF, CelebV, and our introduced “Wild” dataset. The “Wild” dataset comprises 2019
clips, totaling approximately 155.9 hours of video content, featuring a diverse array of lip motions,
facial expressions, and head poses. This extensive dataset provides a solid foundation for training
and testing our portrait image animation framework, facilitating a comprehensive assessment of its
ability to generate high-quality and expressive animations across various scenarios.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 3: Qualitative comparison between different high-resolution enhancement methods.

Evaluation Metrics. We employ several evaluation metrics to rigorously evaluate our portrait im-
age animation framework. The Fréchet Inception Distance (FID) measures the statistical distance
between generated and real images in feature space, with lower values indicating higher quality.
The Fréchet Video Distance (FVD) extends this concept to video, assessing the similarity between
generated and real videos, where lower values signify superior visual quality. The Sync-C metric
gauges lip synchronization consistency with audio, with higher scores reflecting better alignment.
Conversely, the Sync-D metric evaluates the temporal consistency of dynamic lip movements, where
lower values denote improved motion fidelity. Finally, the Expression-FID (E-FID) quantifies ex-
pression synchronization differences between generated content and ground truth videos, providing
a quantitative assessment of expression accuracy.

A.4 EXPERIMENTAL RESULTS

Comparison on CelebV Dataset. Table 1 and Figure 1 present the quantitative and qualitative
comparisons for the CelebV dataset. Our method achieves the lowest FID of 37.944 and an E-FID
of 14.682, indicating superior animation quality. The FVD metric is reported at 477.412, suggesting
a coherent video structure. Additionally, our Sync-C score of 6.928 demonstrates competitive per-
formance relative to real video standards. Notably, the increased inference duration has resulted in
a significant deterioration in both FID and FVD scores among existing methods, particularly with
EchoMimic and Hallo, which exhibit marked degradation in FVD metrics. Additionally, Aniportrait
demonstrates notable declines in lip synchronization and expression metrics.

Animation of Different Portrait Styles. Figure 2. This figure illustrates that our method is capable
of processing a wide range of input types, including oil paintings, anime images, and portraits from
generative models. These findings highlight the versatility and effectiveness of our approach in
accommodating different artistic styles.

Comparison between Different High-Resolution Enhancement Methods. Figure 3 provides a
qualitative comparison of other image-based enhancement methods. The analysis reveals that in-
tegrating super-resolution with temporal alignment significantly enhances visual fidelity, reduces
artifacts, and increases image sharpness, resulting in a more coherent and realistic representation of
facial features and expressions.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Reference image (b) Motion frames

Figure 4: Attention map visualization of the reference image and motion frames.

Attention Map Visualization. Figure 4 presents the attention map visualization, which highlights
both the reference image and the temporal attention associated with the motion frames. The re-
sults indicate that the reference image indeed influences the overall appearance of the portrait and
background due to the implementation of patch drop augmentation. In contrast, the motion frames
predominantly focus on regions related to facial motion, underscoring their role in capturing dy-
namic attributes in the generated animation.

A.5 LIMITATIONS AND FUTURE WORK

Our method for long-duration, high-resolution portrait image animation has several limitations.
(1) Reliance on a single reference image constrains the diversity of generated expressions and poses,
indicating a need for multiple references or advanced models capable of synthesizing varied facial
features. (2) While the patch-drop data augmentation technique effectively preserves motion dy-
namics, it may introduce artifacts; thus, future research should investigate alternative strategies or
adaptive mechanisms for content-specific corruption. (3) The substantial computational demands
of generating 4K resolution videos necessitate optimization and hardware acceleration to enable
real-time applications.
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