Exploring The Loss Landscape Of Regularized Neural Networks Via Convex Duality

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Sungyoon Kim, Aaron Mishkin, Mert Pilanci

Abstract

We discuss several aspects of the loss landscape of regularized neural networks: the structure of stationary points, connectivity of optimal solutions, path with non-increasing loss to arbitrary global optimum, and the nonuniqueness of optimal solutions, by casting the problem into an equivalent convex problem and considering its dual. Starting from two-layer neural networks with scalar output, we first characterize the solution set of the convex problem using its dual and further characterize all stationary points. With the characterization, we show that the topology of the global optima goes through a phase transition as the width of the network changes, and construct counterexamples where the problem may have a continuum of optimal solutions. Finally, we show that the solution set characterization and connectivity results can be extended to different architectures, including two layer vector-valued neural networks and parallel three-layer neural networks.