Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Zhaoyu Liu, Kan Jiang, Murong Ma, Zhe Hou, Yun Lin, Jin Song Dong
Analyzing Fast, Frequent, and Fine-grained ($F^3$) events presents a significant challenge in video analytics and multi-modal LLMs. Current methods struggle to identify events that satisfy all the $F^3$ criteria with high accuracy due to challenges such as motion blur and subtle visual discrepancies. To advance research in video understanding, we introduce $F^3Set$, a benchmark that consists of video datasets for precise $F^3$ event detection. Datasets in $F^3Set$ are characterized by their extensive scale and comprehensive detail, usually encompassing over 1,000 event types with precise timestamps and supporting multi-level granularity. Currently, $F^3Set$ contains several sports datasets, and this framework may be extended to other applications as well. We evaluated popular temporal action understanding methods on $F^3Set$, revealing substantial challenges for existing techniques. Additionally, we propose a new method, $F^3ED$, for $F^3$ event detections, achieving superior performance. The dataset, model, and benchmark code are available at https://github.com/F3Set/F3Set.