Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Jiawei Zhou, Li Dong, Furu Wei, Lei Chen
Information retrieval has transitioned from standalone systems into essential components across broader applications, with indexing efficiency, cost-effectiveness, and freshness becoming increasingly critical yet often overlooked. In this paper, we introduce SemI-parametric Disentangled Retrieval (SiDR), a bi-encoder retrieval framework that decouples retrieval index from neural parameters to enable efficient, low-cost, and parameter-agnostic indexing for emerging use cases. Specifically, in addition to using embeddings as indexes like existing neural retrieval methods, SiDR supports a non-parametric tokenization index for search, achieving BM25-like indexing complexity with significantly better effectiveness. Our comprehensive evaluation across 16 retrieval benchmarks demonstrates that SiDR outperforms both neural and term-based retrieval baselines under the same indexing workload: (i) When using an embedding-based index, SiDR exceeds the performance of conventional neural retrievers while maintaining similar training complexity; (ii) When using a tokenization-based index, SiDR drastically reduces indexing cost and time, matching the complexity of traditional term-based retrieval, while consistently outperforming BM25 on all in-domain datasets; (iii) Additionally, we introduce a late parametric mechanism that matches BM25 index preparation time while outperforming other neural retrieval baselines in effectiveness.