Transformer Encoder Satisfiability: Complexity and Impact on Formal Reasoning

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Marco Sälzer, Eric Alsmann, Martin Lange

Abstract

We analyse the complexity of the satisfiability problem, or similarly feasibility problem, (trSAT) for transformer encoders (TE), which naturally occurs in formal verification or interpretation, collectively referred to as formal reasoning. We find that trSAT is undecidable when considering TE as they are commonly studied in the expressiveness community. Furthermore, we identify practical scenarios where trSAT is decidable and establish corresponding complexity bounds. Beyond trivial cases, we find that quantized TE, those restricted by fixed-width arithmetic, lead to the decidability of trSAT due to their limited attention capabilities. However, the problem remains difficult, as we establish scenarios where trSAT is NEXPTIME-hard and others where it is solvable in NEXPTIME for quantized TE. To complement our complexity results, we place our findings and their implications in the broader context of formal reasoning.