Rational Decision-Making Agent with Learning Internal Utility Judgment

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper Supplemental

Authors

Yining Ye, Xin Cong, Shizuo Tian, Yujia Qin, Chong Liu, Yankai Lin, Zhiyuan Liu, Maosong Sun

Abstract

With remarkable advancements, large language models (LLMs) have attracted significant efforts to develop LLM-based agents capable of executing intricate multi-step decision-making tasks. Existing approaches predominantly build upon the external performance measure to guide the decision-making process but the reliance on the external performance measure as prior is problematic in real-world scenarios, where such prior may be unavailable, flawed, or even erroneous. For genuine autonomous decision-making for LLM-based agents, it is imperative to develop rationality from their posterior experiences to judge the utility of each decision independently. In this work, we propose RaDAgent (Rational Decision-Making Agent), which fosters the development of its rationality through an iterative framework involving Experience Exploration and Utility Learning. Within this framework, Elo-based Utility Learning is devised to assign Elo scores to individual decision steps to judge their utilities via pairwise comparisons. Consequently, these Elo scores guide the decision-making process to derive optimal outcomes. Experimental results on the Game of 24, WebShop, ToolBench and RestBench datasets demonstrate RaDAgent’s superiority over baselines, achieving about 7.8% improvement on average. Besides, RaDAgent also can reduce costs (ChatGPT API calls), highlighting its effectiveness and efficiency.