Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik (Durk) Kingma, Yinyu Ye, Zhi-Quan Luo, Ruoyu Sun
We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with $50$% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). By delving into the Hessian structure of neural nets, we find Adam’s $v$ might not function at its full potential as effectively as we expected. We find that $\geq 99.9$% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We then provide one simple way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 39M to 13B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs, thereby increasing throughput. For instance, Adam-mini achieves $49.6$% higher throughput than AdamW when pre-training Llama 2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.