FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows"

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Yifei Ming, Senthil Purushwalkam, Shrey Pandit, Zixuan Ke, Xuan-Phi Nguyen, Caiming Xiong, Shafiq Joty

Abstract

Ensuring faithfulness to context in large language models (LLMs) and retrieval-augmented generation (RAG) systems is crucial for reliable deployment in real-world applications, as incorrect or unsupported information can erode user trust. Despite advancements on standard benchmarks, faithfulness hallucination—where models generate responses misaligned with the provided context—remains a significant challenge. In this work, we introduce FaithEval, a novel and comprehensive benchmark tailored to evaluate the faithfulness of LLMs in contextual scenarios across three diverse tasks: unanswerable, inconsistent, and counterfactual contexts. These tasks simulate real-world challenges where retrieval mechanisms may surface incomplete, contradictory, or fabricated information. FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework, employing both LLM-based auto-evaluation and human validation. Our extensive study across a wide range of open-source and proprietary models reveals that even state-of-the-art models often struggle to remain faithful to the given context, and that larger models do not necessarily exhibit improved faithfulness. Code is available at: https://github.com/SalesforceAIResearch/FaithEval.