Routing Experts: Learning to Route Dynamic Experts in Existing Multi-modal Large Language Models

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Qiong Wu, Zhaoxi Ke, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji

Abstract

Recently, mixture of experts (MoE) has become a popular paradigm for achieving the trade-off between modal capacity and efficiency of multimodal large language models (MLLMs). Different from previous efforts, we are dedicated to exploring the dynamic experts in existing MLLMs and showing that a standard MLLM can also be a mixture of experts. However, achieving this target is still notoriously challenging. The well-trained MLLMs are more accustomed to the fixed pathway and a drastic change in its inference manner also greatly impedes its performance. To address these issues, we propose a novel dynamic expert routing method for existing MLLMs, termed Routing Experts (RoE), which can achieve example-dependent optimal path routing without obvious structure tweaks. Meanwhile, a new structure sparsity regularization is also introduced to force the well-trained MLLMs to learn more short-cut pathways. In addition, we also address the alignment of the training and inference of MLLMs in terms of network routing. To validate RoE, we apply it to a set of existing MLLMs, including LLaVA-1.5, LLaVA-HR and VILA, and conduct extensive experiments on a bunch of VL benchmarks. The experiment results not only show the effectiveness of our RoE in improving MLLMs' efficiency, but also yield obvious advantages over MoE-LLaVA in both performance and speed, e.g., an average performance gain of 3.3% on 5 benchmarks while being 1.61 times faster. Our code is anonymously released at https://github.com/DoubtedSteam/RoE