Streamlining Redundant Layers to Compress Large Language Models

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, Hong Chen

Abstract

This paper introduces LLM-Streamline, a pioneer work on layer pruning for large language models (LLMs). It is based on the observation that different layers have varying impacts on hidden states, enabling the identification of less important layers to be pruned. LLM-Streamline comprises two parts: layer pruning, which removes consecutive layers with the lowest importance based on target sparsity, and layer replacement, a novel module that trains a lightweight network to replace the pruned layers to mitigate performance loss. Additionally, a new metric called stability is proposed to address the limitations of the widely used accuracy metric in evaluating model compression. Experiments show that LLM-Streamline outperforms both previous and concurrent state-of-the-art pruning methods in terms of both performance and training efficiency. Our code is available at \href{https://github.com/RUCKBReasoning/LLM-Streamline}{this repository}.