Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Jongmin Lee, Meiqi Sun, Pieter Abbeel
In the unsupervised pre-training for reinforcement learning, the agent aims to learn a prior policy for downstream tasks without relying on task-specific reward functions. We focus on state entropy maximization (SEM), where the goal is to learn a policy that maximizes the entropy of the state's stationary distribution. In this paper, we introduce SEMDICE, a principled off-policy algorithm that computes an SEM policy from an arbitrary off-policy dataset, which optimizes the policy directly within the space of stationary distributions. SEMDICE computes a single, stationary Markov state-entropy-maximizing policy from an arbitrary off-policy dataset. Experimental results demonstrate that SEMDICE outperforms baseline algorithms in maximizing state entropy while achieving the best adaptation efficiency for downstream tasks among SEM-based unsupervised RL pre-training methods.