Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Xiaojian Lin, Hanhui Li, Yuhao Cheng, Yiqiang Yan, Xiaodan Liang
Recent interactive point-based image manipulation methods have gained considerable attention for being user-friendly. However, these methods still face two types of ambiguity issues that can lead to unsatisfactory outcomes, namely, intention ambiguity which misinterprets the purposes of users, and content ambiguity where target image areas are distorted by distracting elements. To address these issues and achieve general-purpose manipulations, we propose a novel task-aware, training-free framework called GDrag. Specifically, GDrag defines a taxonomy of atomic manipulations, which can be parameterized and combined unitedly to represent complex manipulations, thereby reducing intention ambiguity. Furthermore, GDrag introduces two strategies to mitigate content ambiguity, including an anti-ambiguity dense trajectory calculation method (ADT) and a self-adaptive motion supervision method (SMS). Given an atomic manipulation, ADT converts the sparse user-defined handle points into a dense point set by selecting their semantic and geometric neighbors, and calculates the trajectory of the point set. Unlike previous motion supervision methods relying on a single global scale for low-rank adaption, SMS jointly optimizes point-wise adaption scales and latent feature biases. These two methods allow us to model fine-grained target contexts and generate precise trajectories. As a result, GDrag consistently produces precise and appealing results in different editing tasks. Extensive experiments on the challenging DragBench dataset demonstrate that GDrag outperforms state-of-the-art methods significantly. The code of GDrag will be released upon acceptance.