Extendable and Iterative Structure Learning Strategy for Bayesian Networks

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Hamid Kalantari, Russell Greiner, Pouria Ramazi

Abstract

Learning the structure of Bayesian networks is a fundamental yet computationally intensive task, especially as the number of variables grows. Traditional algorithms require retraining from scratch when new variables are introduced, making them impractical for dynamic or large-scale applications. In this paper, we propose an extendable structure learning strategy that efficiently incorporates a new variable $Y$ into an existing Bayesian network graph $\mathcal{G}$ over variables $\mathcal{X}$, resulting in an updated P-map graph $\bar{\mathcal{G}}$ on $\bar{\mathcal{X}} = \mathcal{X} \cup \{Y\}$. By leveraging the information encoded in $\mathcal{G}$, our method significantly reduces computational overhead compared to learning $\bar{\mathcal{G}}$ from scratch. Empirical evaluations demonstrate runtime reductions of up to 1300x without compromising accuracy. Building on this approach, we introduce a novel iterative paradigm for structure learning over $\mathcal{X}$. Starting with a small subset $\mathcal{U} \subset \mathcal{X}$, we iteratively add the remaining variables using our extendable algorithms to construct a P-map graph over the full set. This method offers runtime advantages comparable to common algorithms while maintaining similar accuracy. Our contributions provide a scalable solution for Bayesian network structure learning, enabling efficient model updates in real-time and high-dimensional settings.