Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Hongwei Wen, Annika Betken, Hanyuan Hang
Complex classification scenarios, including long-tailed learning, domain adaptation, and transfer learning, present substantial challenges for traditional algorithms. Conditional class probability (CCP) predictions have recently become critical components of many state-of-the-art algorithms designed to address these challenging scenarios. Among kernel methods, kernel logistic regression (KLR) is distinguished by its effectiveness in predicting CCPs through the minimization of the cross-entropy (CE) loss. Despite the empirical success of CCP-based approaches, the theoretical understanding of their performance, particularly regarding the CE loss, remains limited. In this paper, we bridge this gap by demonstrating that KLR-based algorithms achieve minimax optimal convergence rates for the CE loss under mild assumptions in these complex tasks, thereby establishing their theoretical efficiency in such demanding contexts.