Online-to-Offline RL for Agent Alignment

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Xu Liu, Haobo Fu, Stefano V. Albrecht, QIANG FU, Shuai Li

Abstract

Reinforcement learning (RL) has shown remarkable success in training agents to achieve high-performing policies, particularly in domains like Game AI where simulation environments enable efficient interactions. However, despite their success in maximizing these returns, such online-trained policies often fail to align with human preferences concerning actions, styles, and values. The challenge lies in efficiently adapting these online-trained policies to align with human preferences, given the scarcity and high cost of collecting human behavior data. In this work, we formalize the problem as online-to-offline RL and propose ALIGNment of Game AI to Preferences (ALIGN-GAP), an innovative approach for the alignment of well-trained game agents to human preferences. Our method features a carefully designed reward model that encodes human preferences from limited offline data and incorporates curriculum-based preference learning to align RL agents with targeted human preferences. Experiments across diverse environments and preference types demonstrate the performance of ALIGN-GAP, achieving effective alignment with human preferences.