Long-Context Linear System Identification

Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference

Bibtex Paper

Authors

Oğuz Kaan Yüksel, Mathieu Even, Nicolas Flammarion

Abstract

This paper addresses the problem of long-context linear system identification, where the state $x_t$ of the system at time $t$ depends linearly on previous states $x_s$ over a fixed context window of length $p$. We establish a sample complexity bound that matches the _i.i.d._ parametric rate, up to logarithmic factors for a broad class of systems, extending previous work that considered only first-order dependencies. Our findings reveal a ``learning-without-mixing'' phenomenon, indicating that learning long-context linear autoregressive models is not hindered by slow mixing properties potentially associated with extended context windows. Additionally, we extend these results to _(i)_ shared low-rank feature representations, where rank-regularized estimators improve rates with respect to dimensionality, and _(ii)_ misspecified context lengths in strictly stable systems, where shorter contexts offer statistical advantages.