Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Feng Ji, Yanan Zhao, KAI ZHAO, Hanyang Meng, Jielong Yang, Wee Peng Tay
Many works on graph neural networks (GNNs) focus on graph topologies and analyze graph-related operations to enhance performance on tasks such as node classification. In this paper, we propose to understand GNNs based on a feature-centric approach. Our main idea is to treat the features of nodes from each label class as a whole, from which we can identify the centroid. The convex hull of these centroids forms a simplex called the feature centroid simplex, where a simplex is a high-dimensional generalization of a triangle. We borrow ideas from coarse geometry to analyze the geometric properties of the feature centroid simplex by comparing them with basic geometric models, such as regular simplexes and degenerate simplexes. Such a simplex provides a simple platform to understand graph-based feature aggregation, including phenomena such as heterophily, oversmoothing, and feature re-shuffling. Based on the theory, we also identify simple and useful tricks for the node classification task.