Part of International Conference on Representation Learning 2025 (ICLR 2025) Conference
Jinwei Yao, Kaiqi Chen, Kexun Zhang, Jiaxuan You, Binhang Yuan, Zeke Wang, Tao Lin
Large language models (LLMs) are increasingly employed for complex tasks that process multiple generation calls in a tree structure with shared prefixes of tokens, including few-shot prompting, multi-step reasoning, speculative decoding, etc. However, existing inference systems for tree-based applications are inefficient due to improper partitioning of queries and KV cache during attention calculation.This leads to two main issues: (1) a lack of memory access (IO) reuse for KV cache of shared prefixes, and (2) poor load balancing.As a result, there is redundant KV cache IO between GPU global memory and shared memory, along with low GPU utilization. To address these challenges, we propose DeFT(Decoding with Flash Tree-Attention), a hardware-efficient attention algorithm with prefix-aware and load-balanced KV cache partitions. DeFT reduces the number of read/write operations of KV cache during attention calculation through **KV-Guided Grouping**, a method that avoids repeatedly loading KV cache of shared prefixes in attention computation. Additionally, we propose **Flattened Tree KV Splitting**, a mechanism that ensures even distribution of the KV cache across partitions with little computation redundancy, enhancing GPU utilization during attention computations. By reducing 73-99% KV cache IO and nearly 100% IO for partial results during attention calculation, DeFT achieves up to 2.23/3.59$\times$ speedup in the end-to-end/attention latency across three practical tree-based workloads compared to state-of-the-art attention algorithms. Our code is available at https://github.com/LINs-lab/DeFT.